{"title":"眼动植物数学模型的泛化性研究","authors":"Dmytro Katrychuk, Oleg V. Komogortsev","doi":"10.1145/3517031.3532523","DOIUrl":null,"url":null,"abstract":"The Oculomotor plant mathematical model (OPMM) is a dynamic system that describes a human eye in motion. In this study, we focus on an anatomically inspired homeomorphic model where every component is a mathematical representation of a certain biological phenomenon of a real oculomotor plant. This approach estimates internal state of oculomotor plant from recorded eye movements. In the past, the utility of such models was shown to be useful in biometrics and gaze contingent rendering via eye movement prediction. In previous studies, an implicit underlying assumption was that a set of parameters estimated for a certain subject should remain consistent in time and generalize to unseen data. We note a major drawback of the prior work, as it operated under this assumption without explicit validation. This work creates a quantifiable baseline for the specific OPMM where the generalizability of the model parameters is the foundational property of their estimation.","PeriodicalId":339393,"journal":{"name":"2022 Symposium on Eye Tracking Research and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on the generalizability of Oculomotor Plant Mathematical Model\",\"authors\":\"Dmytro Katrychuk, Oleg V. Komogortsev\",\"doi\":\"10.1145/3517031.3532523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Oculomotor plant mathematical model (OPMM) is a dynamic system that describes a human eye in motion. In this study, we focus on an anatomically inspired homeomorphic model where every component is a mathematical representation of a certain biological phenomenon of a real oculomotor plant. This approach estimates internal state of oculomotor plant from recorded eye movements. In the past, the utility of such models was shown to be useful in biometrics and gaze contingent rendering via eye movement prediction. In previous studies, an implicit underlying assumption was that a set of parameters estimated for a certain subject should remain consistent in time and generalize to unseen data. We note a major drawback of the prior work, as it operated under this assumption without explicit validation. This work creates a quantifiable baseline for the specific OPMM where the generalizability of the model parameters is the foundational property of their estimation.\",\"PeriodicalId\":339393,\"journal\":{\"name\":\"2022 Symposium on Eye Tracking Research and Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Symposium on Eye Tracking Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3517031.3532523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517031.3532523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A study on the generalizability of Oculomotor Plant Mathematical Model
The Oculomotor plant mathematical model (OPMM) is a dynamic system that describes a human eye in motion. In this study, we focus on an anatomically inspired homeomorphic model where every component is a mathematical representation of a certain biological phenomenon of a real oculomotor plant. This approach estimates internal state of oculomotor plant from recorded eye movements. In the past, the utility of such models was shown to be useful in biometrics and gaze contingent rendering via eye movement prediction. In previous studies, an implicit underlying assumption was that a set of parameters estimated for a certain subject should remain consistent in time and generalize to unseen data. We note a major drawback of the prior work, as it operated under this assumption without explicit validation. This work creates a quantifiable baseline for the specific OPMM where the generalizability of the model parameters is the foundational property of their estimation.