使用基于二叉树的并行化的高可伸缩Web服务组合

Patrick Hennig, Wolf-Tilo Balke
{"title":"使用基于二叉树的并行化的高可伸缩Web服务组合","authors":"Patrick Hennig, Wolf-Tilo Balke","doi":"10.1109/ICWS.2010.45","DOIUrl":null,"url":null,"abstract":"Data intensive applications, e.g. in life sciences, pose new efficiency challenges to the service composition problem. Since today computing power is mainly increased by multiplication of CPU cores, algorithms have to be redesigned to benefit from this evolution. In this paper we present a framework for parallelizing service composition algorithms investigating how to partition the composition problem into multiple parallel threads. But in contrast to intuition, the straightforward parallelization techniques do not lead to superior performance as our baseline evaluation reveals. To harness the full power of multicore architectures, we propose two novel approaches to evenly distribute the workload in a sophisticated fashion. In fact, our extensive experiments on practical life science data resulted in an impressive speedup of over 300% using only 4 cores. Moreover, we show that our techniques can also benefit from all advanced pruning heuristics used in sequential algorithms.","PeriodicalId":170573,"journal":{"name":"2010 IEEE International Conference on Web Services","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Highly Scalable Web Service Composition Using Binary Tree-Based Parallelization\",\"authors\":\"Patrick Hennig, Wolf-Tilo Balke\",\"doi\":\"10.1109/ICWS.2010.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data intensive applications, e.g. in life sciences, pose new efficiency challenges to the service composition problem. Since today computing power is mainly increased by multiplication of CPU cores, algorithms have to be redesigned to benefit from this evolution. In this paper we present a framework for parallelizing service composition algorithms investigating how to partition the composition problem into multiple parallel threads. But in contrast to intuition, the straightforward parallelization techniques do not lead to superior performance as our baseline evaluation reveals. To harness the full power of multicore architectures, we propose two novel approaches to evenly distribute the workload in a sophisticated fashion. In fact, our extensive experiments on practical life science data resulted in an impressive speedup of over 300% using only 4 cores. Moreover, we show that our techniques can also benefit from all advanced pruning heuristics used in sequential algorithms.\",\"PeriodicalId\":170573,\"journal\":{\"name\":\"2010 IEEE International Conference on Web Services\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Web Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWS.2010.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Web Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2010.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

数据密集型应用,如生命科学,对服务组合问题提出了新的效率挑战。由于今天的计算能力主要是通过CPU内核的倍增来提高的,因此必须重新设计算法以从这种演变中受益。在本文中,我们提出了一个并行服务组合算法的框架,研究如何将组合问题划分为多个并行线程。但是,与直觉相反,直接的并行化技术并没有像我们的基线评估显示的那样带来卓越的性能。为了充分利用多核架构的强大功能,我们提出了两种新颖的方法,以一种复杂的方式均匀地分配工作负载。事实上,我们对实际生命科学数据进行了广泛的实验,结果表明仅使用4个核心就可以获得超过300%的令人印象深刻的加速。此外,我们还表明,我们的技术也可以从序列算法中使用的所有高级剪枝启发式算法中受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly Scalable Web Service Composition Using Binary Tree-Based Parallelization
Data intensive applications, e.g. in life sciences, pose new efficiency challenges to the service composition problem. Since today computing power is mainly increased by multiplication of CPU cores, algorithms have to be redesigned to benefit from this evolution. In this paper we present a framework for parallelizing service composition algorithms investigating how to partition the composition problem into multiple parallel threads. But in contrast to intuition, the straightforward parallelization techniques do not lead to superior performance as our baseline evaluation reveals. To harness the full power of multicore architectures, we propose two novel approaches to evenly distribute the workload in a sophisticated fashion. In fact, our extensive experiments on practical life science data resulted in an impressive speedup of over 300% using only 4 cores. Moreover, we show that our techniques can also benefit from all advanced pruning heuristics used in sequential algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Everett: Providing Branch-Isolation for a Data Evolution Service Message Correlation and Web Service Protocol Mining from Inaccurate Logs QoS Aware Semantic Web Service Composition Approach Considering Pre/Postconditions Benchmarking Vulnerability Detection Tools for Web Services Service Selection Based on Customer Rating of Quality of Service Attributes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1