建筑供暖需求响应的自适应控制与识别

J. Maree, S. Gros, H. Walnum
{"title":"建筑供暖需求响应的自适应控制与识别","authors":"J. Maree, S. Gros, H. Walnum","doi":"10.23919/ecc54610.2021.9655010","DOIUrl":null,"url":null,"abstract":"An adaptive control and system identification framework is presented. This framework is applied for closed-loop system identification and adaptive heating demand-response control for residential buildings. The building envelope, considered for control purposes within the context of a Model Predictive Control (MPC) strategy, is based on the simplified Resistive-Capacitive analogy. These models characterized with parametric and state uncertainty, are adapted by incorporating, on-line, learning-based Moving Horizon Estimation (MHE) for the joint state-parameter based estimation problem. Learning-based Moving Horizon Estimation, in this context, incorporates a reinforcement learning (RL) strategy. The latter entails a Q-factor parametrized value function approximation of the MHE arrival cost which is adapted (learned) on-line using a temporal difference algorithm based on the MPC control policy.","PeriodicalId":105499,"journal":{"name":"2021 European Control Conference (ECC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive control and identification for heating demand-response in buildings\",\"authors\":\"J. Maree, S. Gros, H. Walnum\",\"doi\":\"10.23919/ecc54610.2021.9655010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive control and system identification framework is presented. This framework is applied for closed-loop system identification and adaptive heating demand-response control for residential buildings. The building envelope, considered for control purposes within the context of a Model Predictive Control (MPC) strategy, is based on the simplified Resistive-Capacitive analogy. These models characterized with parametric and state uncertainty, are adapted by incorporating, on-line, learning-based Moving Horizon Estimation (MHE) for the joint state-parameter based estimation problem. Learning-based Moving Horizon Estimation, in this context, incorporates a reinforcement learning (RL) strategy. The latter entails a Q-factor parametrized value function approximation of the MHE arrival cost which is adapted (learned) on-line using a temporal difference algorithm based on the MPC control policy.\",\"PeriodicalId\":105499,\"journal\":{\"name\":\"2021 European Control Conference (ECC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ecc54610.2021.9655010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ecc54610.2021.9655010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种自适应控制和系统辨识框架。将该框架应用于住宅供热系统的闭环辨识和自适应需求响应控制。在模型预测控制(MPC)策略的背景下,考虑用于控制目的的建筑围护结构基于简化的电阻-电容类比。这些模型具有参数不确定性和状态不确定性的特点,通过将在线的、基于学习的移动地平线估计方法(MHE)应用于基于状态参数的联合估计问题。在这种情况下,基于学习的移动地平线估计结合了强化学习(RL)策略。后者需要一个q因子参数化值函数逼近MHE到达成本,该成本使用基于MPC控制策略的时间差分算法在线适应(学习)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive control and identification for heating demand-response in buildings
An adaptive control and system identification framework is presented. This framework is applied for closed-loop system identification and adaptive heating demand-response control for residential buildings. The building envelope, considered for control purposes within the context of a Model Predictive Control (MPC) strategy, is based on the simplified Resistive-Capacitive analogy. These models characterized with parametric and state uncertainty, are adapted by incorporating, on-line, learning-based Moving Horizon Estimation (MHE) for the joint state-parameter based estimation problem. Learning-based Moving Horizon Estimation, in this context, incorporates a reinforcement learning (RL) strategy. The latter entails a Q-factor parametrized value function approximation of the MHE arrival cost which is adapted (learned) on-line using a temporal difference algorithm based on the MPC control policy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed cyber-attack isolation for large-scale interconnected systems Resilient Consensus Against Epidemic Malicious Attacks Observability Analysis for Spacecraft Attitude Determination using a Single Temperature Sensor* Distributed Leader-Follower Formation Control for Autonomous Vessels based on Model Predictive Control* Demand-Side Management in a Micro-Grid with Multiple Retailers: A Coalitional Game Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1