基于自适应滤波的心音信号去噪方法在心肌梗死检测中的应用

Ira Puspasari, T. Mengko, A. W. Setiawan, T. Adiono, M. Pramudyo
{"title":"基于自适应滤波的心音信号去噪方法在心肌梗死检测中的应用","authors":"Ira Puspasari, T. Mengko, A. W. Setiawan, T. Adiono, M. Pramudyo","doi":"10.1109/ECBIOS57802.2023.10218715","DOIUrl":null,"url":null,"abstract":"Processing heart sound signals, especially myocardial infarction (MI) signals, is crucial to identify essential features. The environment strongly influences the results of recording heart sound using a stethoscope on a patient in the hospital, the patient's condition, and other unpredictable noises. A crucial processing step of this signal is filtering. Noise removal in myocardial infarction signals has always been challenging in biomedical signal processing. We compare CEEMDAN and hard thresholding filtering methods. The signal result with the lowest MSE becomes the reference signal in LMSAF. The average MSE value in myocardial infarction signal noise reduction using LMSAF is 0.10, with an average time processing is 1.91 s. The normal signal temporal features on the systolic phase, namely T11: 0.81 s, and on the diastolic phase, namely T12: 0.33 s. The time duration of coronary artery disease (CAD) signal T11: 1.00 s, and T12: 0.46 s, CAD ST-elevation myocardial infarction (CAD STEMI) T-11: 0.99 s, and T12: 0.49 s, CAD non-ST-elevation myocardial infarction (CAD NSTEMI) T-11: 0.98 s, and T12: 0.51 s.","PeriodicalId":334600,"journal":{"name":"2023 IEEE 5th Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS)","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Denoising of Heart Sound Signal for Myocardial Infarction Detection Based on Adaptive Filtering\",\"authors\":\"Ira Puspasari, T. Mengko, A. W. Setiawan, T. Adiono, M. Pramudyo\",\"doi\":\"10.1109/ECBIOS57802.2023.10218715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processing heart sound signals, especially myocardial infarction (MI) signals, is crucial to identify essential features. The environment strongly influences the results of recording heart sound using a stethoscope on a patient in the hospital, the patient's condition, and other unpredictable noises. A crucial processing step of this signal is filtering. Noise removal in myocardial infarction signals has always been challenging in biomedical signal processing. We compare CEEMDAN and hard thresholding filtering methods. The signal result with the lowest MSE becomes the reference signal in LMSAF. The average MSE value in myocardial infarction signal noise reduction using LMSAF is 0.10, with an average time processing is 1.91 s. The normal signal temporal features on the systolic phase, namely T11: 0.81 s, and on the diastolic phase, namely T12: 0.33 s. The time duration of coronary artery disease (CAD) signal T11: 1.00 s, and T12: 0.46 s, CAD ST-elevation myocardial infarction (CAD STEMI) T-11: 0.99 s, and T12: 0.49 s, CAD non-ST-elevation myocardial infarction (CAD NSTEMI) T-11: 0.98 s, and T12: 0.51 s.\",\"PeriodicalId\":334600,\"journal\":{\"name\":\"2023 IEEE 5th Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS)\",\"volume\":\"194 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECBIOS57802.2023.10218715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECBIOS57802.2023.10218715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

处理心音信号,特别是心肌梗死(MI)信号,是识别基本特征的关键。在医院用听诊器对病人进行心音记录的结果、病人的状况和其他不可预测的噪音都受到环境的强烈影响。该信号的关键处理步骤是滤波。心肌梗死信号的去噪一直是生物医学信号处理中的难题。我们比较了CEEMDAN和硬阈值滤波方法。MSE最小的信号结果成为LMSAF中的参考信号。LMSAF对心肌梗死信号降噪的平均MSE值为0.10,平均处理时间为1.91 s。正常信号在收缩期即T11: 0.81 s,在舒张期即T12: 0.33 s。冠心病(CAD)信号持续时间T11: 1.00 s, T12: 0.46 s,冠心病st段抬高型心肌梗死(CAD STEMI) T-11: 0.99 s, T12: 0.49 s,冠心病非st段抬高型心肌梗死(CAD NSTEMI) T-11: 0.98 s, T12: 0.51 s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Denoising of Heart Sound Signal for Myocardial Infarction Detection Based on Adaptive Filtering
Processing heart sound signals, especially myocardial infarction (MI) signals, is crucial to identify essential features. The environment strongly influences the results of recording heart sound using a stethoscope on a patient in the hospital, the patient's condition, and other unpredictable noises. A crucial processing step of this signal is filtering. Noise removal in myocardial infarction signals has always been challenging in biomedical signal processing. We compare CEEMDAN and hard thresholding filtering methods. The signal result with the lowest MSE becomes the reference signal in LMSAF. The average MSE value in myocardial infarction signal noise reduction using LMSAF is 0.10, with an average time processing is 1.91 s. The normal signal temporal features on the systolic phase, namely T11: 0.81 s, and on the diastolic phase, namely T12: 0.33 s. The time duration of coronary artery disease (CAD) signal T11: 1.00 s, and T12: 0.46 s, CAD ST-elevation myocardial infarction (CAD STEMI) T-11: 0.99 s, and T12: 0.49 s, CAD non-ST-elevation myocardial infarction (CAD NSTEMI) T-11: 0.98 s, and T12: 0.51 s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pedestrian Fall Detection Using Improved YOLOv5 Prediction of Elbow Joint Motion of Stroke Patients by Analyzing Biceps and Triceps Electromyography Signals Application of Intelligent Medical Self-Test Management Use of Nonlinear Analysis Methods for Visual Evaluation and Graphical Representation of Bilateral Jump Landing Tasks Hand Brace with Infrared Heating and Blood Perfusion Monitoring System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1