基于Kullback-Leibler散度距离的模型置信集

G. Barmalzan, T. P. Najafabad
{"title":"基于Kullback-Leibler散度距离的模型置信集","authors":"G. Barmalzan, T. P. Najafabad","doi":"10.18869/ACADPUB.JSRI.9.2.179","DOIUrl":null,"url":null,"abstract":"Consider the problem of estimating true density, h(·) based upon a random sample X1, . . . , Xn. In general, h(·) is approximated using an appropriate (in some sense, see below) model fθ(x). This article using Vuong’s (1989) test along with a collection of k(> 2) non-nested models constructs a set of appropriate models, say model confidence set, for unknown model h(·). Application of such confidence set has been confirmed through a simulation study.","PeriodicalId":422124,"journal":{"name":"Journal of Statistical Research of Iran","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Model Confidence Set Based on Kullback-Leibler Divergence Distance\",\"authors\":\"G. Barmalzan, T. P. Najafabad\",\"doi\":\"10.18869/ACADPUB.JSRI.9.2.179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the problem of estimating true density, h(·) based upon a random sample X1, . . . , Xn. In general, h(·) is approximated using an appropriate (in some sense, see below) model fθ(x). This article using Vuong’s (1989) test along with a collection of k(> 2) non-nested models constructs a set of appropriate models, say model confidence set, for unknown model h(·). Application of such confidence set has been confirmed through a simulation study.\",\"PeriodicalId\":422124,\"journal\":{\"name\":\"Journal of Statistical Research of Iran\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Research of Iran\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18869/ACADPUB.JSRI.9.2.179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Research of Iran","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18869/ACADPUB.JSRI.9.2.179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

考虑基于随机样本X1估计真密度h(·)的问题,…一般来说,h(·)用一个适当的(在某种意义上,见下文)模型fθ(x)来近似。本文使用Vuong(1989)的测试以及k(bbbb2)个非嵌套模型的集合,为未知模型h(·)构建了一组适当的模型,即模型置信集。通过仿真研究证实了该置信集的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model Confidence Set Based on Kullback-Leibler Divergence Distance
Consider the problem of estimating true density, h(·) based upon a random sample X1, . . . , Xn. In general, h(·) is approximated using an appropriate (in some sense, see below) model fθ(x). This article using Vuong’s (1989) test along with a collection of k(> 2) non-nested models constructs a set of appropriate models, say model confidence set, for unknown model h(·). Application of such confidence set has been confirmed through a simulation study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Goodness of Fit Tests based on Information Criterion for Randomly Censored Data Joint Modeling for Zero-Inflated Beta-Binomial and Normal Responses Best Linear Predictors in a Stationary Second Order Autoregressive process by means of near and far observations A Note on the Identifiability of General Bayesian Gaussian Models Simulated Synthetic Population Projection Using an Extended Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1