{"title":"动力系统稳定性的主成分分析与次要成分分析","authors":"M. Hasan","doi":"10.1109/ACC.2006.1657277","DOIUrl":null,"url":null,"abstract":"Algorithms that extract the principal or minor components of a signal are widely used in signal processing and control applications. This paper explores new frameworks for generating learning rules for iteratively computing the principal and minor components (or subspaces) of a given matrix. Stability analysis using Lyapunov theory and La Salle invariance principle is provided to determine regions of attraction of these learning rules. Among many derivations, it is specifically shown that Oja's rule and many variations of it are asymptotically globally stable. Lyapunov stability theory is also applied to weighted learning rules. Some of the essential features for the proposed MCA/PCA learning rules are that they are self normalized and can be applied to non-symmetric matrices. Exact solutions for some nonlinear dynamical systems are also provided","PeriodicalId":265903,"journal":{"name":"2006 American Control Conference","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stability analysis of dynamical systems for minor and principal component analysis\",\"authors\":\"M. Hasan\",\"doi\":\"10.1109/ACC.2006.1657277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithms that extract the principal or minor components of a signal are widely used in signal processing and control applications. This paper explores new frameworks for generating learning rules for iteratively computing the principal and minor components (or subspaces) of a given matrix. Stability analysis using Lyapunov theory and La Salle invariance principle is provided to determine regions of attraction of these learning rules. Among many derivations, it is specifically shown that Oja's rule and many variations of it are asymptotically globally stable. Lyapunov stability theory is also applied to weighted learning rules. Some of the essential features for the proposed MCA/PCA learning rules are that they are self normalized and can be applied to non-symmetric matrices. Exact solutions for some nonlinear dynamical systems are also provided\",\"PeriodicalId\":265903,\"journal\":{\"name\":\"2006 American Control Conference\",\"volume\":\"189 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2006.1657277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2006.1657277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability analysis of dynamical systems for minor and principal component analysis
Algorithms that extract the principal or minor components of a signal are widely used in signal processing and control applications. This paper explores new frameworks for generating learning rules for iteratively computing the principal and minor components (or subspaces) of a given matrix. Stability analysis using Lyapunov theory and La Salle invariance principle is provided to determine regions of attraction of these learning rules. Among many derivations, it is specifically shown that Oja's rule and many variations of it are asymptotically globally stable. Lyapunov stability theory is also applied to weighted learning rules. Some of the essential features for the proposed MCA/PCA learning rules are that they are self normalized and can be applied to non-symmetric matrices. Exact solutions for some nonlinear dynamical systems are also provided