性能优化的预测和规范分析:大型企业系统的框架和案例研究

I. John, R. Karumanchi, S. Bhatnagar
{"title":"性能优化的预测和规范分析:大型企业系统的框架和案例研究","authors":"I. John, R. Karumanchi, S. Bhatnagar","doi":"10.1109/ICMLA.2019.00152","DOIUrl":null,"url":null,"abstract":"In any industrial or software system, predicting future values of measurable parameters well in advance is of utmost importance for avoiding disruptions. The historical data on system parameters measured at regular time intervals can be leveraged to address this long horizon prediction problem. However, complex interdependencies between the parameters and the need for avoiding false recommendations pose challenges in this prediction task. An equally challenging and useful exercise is to identify the 'important' parameters and optimize them in order to attain good system performance. This paper describes a generic framework, along with specific methods, for this data analytics problem and presents a case study on a large-scale enterprise system. The proposed method combines techniques from machine learning, causal analysis, time-series analysis and stochastic optimization to achieve accurate prediction (estimating future values of parameters) and reliable prescription (controlling independent parameters to optimize system performance). The approach is validated with data from a large-scale enterprise service bus consisting of about 30 parameters measured at 5 minute intervals over a period of 6 months.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive and Prescriptive Analytics for Performance Optimization: Framework and a Case Study on a Large-Scale Enterprise System\",\"authors\":\"I. John, R. Karumanchi, S. Bhatnagar\",\"doi\":\"10.1109/ICMLA.2019.00152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In any industrial or software system, predicting future values of measurable parameters well in advance is of utmost importance for avoiding disruptions. The historical data on system parameters measured at regular time intervals can be leveraged to address this long horizon prediction problem. However, complex interdependencies between the parameters and the need for avoiding false recommendations pose challenges in this prediction task. An equally challenging and useful exercise is to identify the 'important' parameters and optimize them in order to attain good system performance. This paper describes a generic framework, along with specific methods, for this data analytics problem and presents a case study on a large-scale enterprise system. The proposed method combines techniques from machine learning, causal analysis, time-series analysis and stochastic optimization to achieve accurate prediction (estimating future values of parameters) and reliable prescription (controlling independent parameters to optimize system performance). The approach is validated with data from a large-scale enterprise service bus consisting of about 30 parameters measured at 5 minute intervals over a period of 6 months.\",\"PeriodicalId\":436714,\"journal\":{\"name\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2019.00152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在任何工业或软件系统中,提前很好地预测可测量参数的未来值对于避免中断至关重要。在固定时间间隔测量的系统参数的历史数据可以用来解决这个长期预测问题。然而,参数之间复杂的相互依赖关系以及避免错误建议的需要对该预测任务提出了挑战。一个同样具有挑战性和有用的练习是确定“重要”参数并对其进行优化,以获得良好的系统性能。本文描述了该数据分析问题的通用框架以及具体方法,并给出了一个大型企业系统的案例研究。该方法结合了机器学习、因果分析、时间序列分析和随机优化等技术,实现了准确的预测(估计参数的未来值)和可靠的处方(控制独立参数以优化系统性能)。该方法使用来自大型企业服务总线的数据进行验证,该总线由大约30个参数组成,在6个月的时间内每隔5分钟测量一次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive and Prescriptive Analytics for Performance Optimization: Framework and a Case Study on a Large-Scale Enterprise System
In any industrial or software system, predicting future values of measurable parameters well in advance is of utmost importance for avoiding disruptions. The historical data on system parameters measured at regular time intervals can be leveraged to address this long horizon prediction problem. However, complex interdependencies between the parameters and the need for avoiding false recommendations pose challenges in this prediction task. An equally challenging and useful exercise is to identify the 'important' parameters and optimize them in order to attain good system performance. This paper describes a generic framework, along with specific methods, for this data analytics problem and presents a case study on a large-scale enterprise system. The proposed method combines techniques from machine learning, causal analysis, time-series analysis and stochastic optimization to achieve accurate prediction (estimating future values of parameters) and reliable prescription (controlling independent parameters to optimize system performance). The approach is validated with data from a large-scale enterprise service bus consisting of about 30 parameters measured at 5 minute intervals over a period of 6 months.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Stenosis Classification of Carotid Artery Sonography using Deep Neural Networks Hybrid Condition Monitoring for Power Electronic Systems Time Series Anomaly Detection from a Markov Chain Perspective Anyone here? Smart Embedded Low-Resolution Omnidirectional Video Sensor to Measure Room Occupancy Deep Learning with Domain Randomization for Optimal Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1