用互信息准则设计有效的汉语拼音文字转换词典

Wei Li, Jin-Song Zhang, Yanlu Xie, Xiaoyun Wang, M. Nishida, Seiichi Yamamoto
{"title":"用互信息准则设计有效的汉语拼音文字转换词典","authors":"Wei Li, Jin-Song Zhang, Yanlu Xie, Xiaoyun Wang, M. Nishida, Seiichi Yamamoto","doi":"10.1109/IALP.2013.37","DOIUrl":null,"url":null,"abstract":"Pinyin-to-character (P2C) conversion is mostly used to input Chinese characters into a computer. Its main problem is homophone words, which is solved through exploiting contextual information provided by lexicon and n-gram language model (LM). Our investigation about the state-of-the-art P2C technologies reveals that the methods of conventional optimization for them were almost based on minimizing text perplexity, however it is not directly related to the optimization of P2C performance. Therefore, we propose to use a new optimization criterion: mutual information (MI) between text corpus and its Pinyin script, to do self-supervised word segmentation, build a lexicon and estimate an n-gram LM, then use them to build P2C system. We realized the P2C system using newspaper corpus. Compared with the two baseline systems using handcrafted lexicon and perplexity based optimized lexicon, our system got relatively 19.7% and 10.3% error reductions on testing corpus respectively. The results show the efficiency of our proposal.","PeriodicalId":413833,"journal":{"name":"2013 International Conference on Asian Language Processing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Mutual Information Criterion to Design an Effective Lexicon for Chinese Pinyin-to-Character Conversion\",\"authors\":\"Wei Li, Jin-Song Zhang, Yanlu Xie, Xiaoyun Wang, M. Nishida, Seiichi Yamamoto\",\"doi\":\"10.1109/IALP.2013.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pinyin-to-character (P2C) conversion is mostly used to input Chinese characters into a computer. Its main problem is homophone words, which is solved through exploiting contextual information provided by lexicon and n-gram language model (LM). Our investigation about the state-of-the-art P2C technologies reveals that the methods of conventional optimization for them were almost based on minimizing text perplexity, however it is not directly related to the optimization of P2C performance. Therefore, we propose to use a new optimization criterion: mutual information (MI) between text corpus and its Pinyin script, to do self-supervised word segmentation, build a lexicon and estimate an n-gram LM, then use them to build P2C system. We realized the P2C system using newspaper corpus. Compared with the two baseline systems using handcrafted lexicon and perplexity based optimized lexicon, our system got relatively 19.7% and 10.3% error reductions on testing corpus respectively. The results show the efficiency of our proposal.\",\"PeriodicalId\":413833,\"journal\":{\"name\":\"2013 International Conference on Asian Language Processing\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2013.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2013.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拼音-字符转换(P2C)主要用于向计算机输入汉字。其主要问题是同音词,通过利用词汇提供的上下文信息和n-gram语言模型(LM)来解决同音词问题。我们对最先进的P2C技术的调查表明,传统的优化方法几乎是基于最小化文本困惑,但它与P2C性能的优化没有直接关系。因此,我们提出了一种新的优化准则:文本语料库与其拼音脚本之间的互信息(MI),进行自监督分词,构建词典和估计n-gram LM,然后利用它们构建P2C系统。我们利用报纸语料库实现了P2C系统。与使用手工词典和基于困惑度的优化词典的基线系统相比,我们的系统在测试语料库上的错误率分别降低了19.7%和10.3%。结果表明我们的建议是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Mutual Information Criterion to Design an Effective Lexicon for Chinese Pinyin-to-Character Conversion
Pinyin-to-character (P2C) conversion is mostly used to input Chinese characters into a computer. Its main problem is homophone words, which is solved through exploiting contextual information provided by lexicon and n-gram language model (LM). Our investigation about the state-of-the-art P2C technologies reveals that the methods of conventional optimization for them were almost based on minimizing text perplexity, however it is not directly related to the optimization of P2C performance. Therefore, we propose to use a new optimization criterion: mutual information (MI) between text corpus and its Pinyin script, to do self-supervised word segmentation, build a lexicon and estimate an n-gram LM, then use them to build P2C system. We realized the P2C system using newspaper corpus. Compared with the two baseline systems using handcrafted lexicon and perplexity based optimized lexicon, our system got relatively 19.7% and 10.3% error reductions on testing corpus respectively. The results show the efficiency of our proposal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Judgment, Extraction and Selective Restriction of Chinese Eventive Verb Categorization and Identification of Fragments with Shi Plus Punctuation Feature Abstraction for Lightweight and Accurate Chinese Word Segmentation The Comparative Research on the Segmentation Strategies of Tibetan Bounded-Variant Forms An Empirical Evaluation of Dimensionality Reduction Using Latent Semantic Analysis on Hindi Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1