{"title":"一种具有耦合电感电压倍增器的新型高增益DC-DC变换器","authors":"Hongfei Ma, Bo Zhang, D. Qiu, Junfeng Han","doi":"10.1109/PEAC.2014.7037821","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel high gain DC-DC converter, the core structure of the circuit is a bridge which is composed of two power switches and two equivalent voltage sources. The two equivalent voltage sources are charged in parallel during the two switches turn on and are discharged in series during the two switches turn off, which makes the converter produce high output voltage to realize high voltage gain without extremely large duty cycle. In addition, the equivalent source is implemented by using coupled inductor voltage multiplier technique, which can further improve voltage gain and reduce switch voltage stress. The simulation and experimental results verify the correctness of the converter derivation and analysis.","PeriodicalId":309780,"journal":{"name":"2014 International Power Electronics and Application Conference and Exposition","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A novel high gain DC-DC converter with coupled inductor voltage multiplier\",\"authors\":\"Hongfei Ma, Bo Zhang, D. Qiu, Junfeng Han\",\"doi\":\"10.1109/PEAC.2014.7037821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel high gain DC-DC converter, the core structure of the circuit is a bridge which is composed of two power switches and two equivalent voltage sources. The two equivalent voltage sources are charged in parallel during the two switches turn on and are discharged in series during the two switches turn off, which makes the converter produce high output voltage to realize high voltage gain without extremely large duty cycle. In addition, the equivalent source is implemented by using coupled inductor voltage multiplier technique, which can further improve voltage gain and reduce switch voltage stress. The simulation and experimental results verify the correctness of the converter derivation and analysis.\",\"PeriodicalId\":309780,\"journal\":{\"name\":\"2014 International Power Electronics and Application Conference and Exposition\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Power Electronics and Application Conference and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEAC.2014.7037821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Power Electronics and Application Conference and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEAC.2014.7037821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel high gain DC-DC converter with coupled inductor voltage multiplier
This paper proposes a novel high gain DC-DC converter, the core structure of the circuit is a bridge which is composed of two power switches and two equivalent voltage sources. The two equivalent voltage sources are charged in parallel during the two switches turn on and are discharged in series during the two switches turn off, which makes the converter produce high output voltage to realize high voltage gain without extremely large duty cycle. In addition, the equivalent source is implemented by using coupled inductor voltage multiplier technique, which can further improve voltage gain and reduce switch voltage stress. The simulation and experimental results verify the correctness of the converter derivation and analysis.