基于EWMA的驾驶员状态分类

V. Naumov
{"title":"基于EWMA的驾驶员状态分类","authors":"V. Naumov","doi":"10.1109/ITST.2011.6060035","DOIUrl":null,"url":null,"abstract":"Most new methods for safety improvement rely on examination of the vehicle data and monitoring of the driver behaviour. The vehicle data may include steering wheel angle, the brake and gas pedal positions, gear, velocity etc. Driver physiological parameters are acquired using heart rate sensors, electrocardiogram, electromyogram, electroencephalogram, head/eye monitoring and tracking systems. Given a stream of input data the safety system should be able to determine the driver state in real-time. In this paper we use exponentially weighted moving averages for transformation of input data into feature vectors used for classification of driver state and investigate accuracy of this approach for datasets collected in driving simulator.","PeriodicalId":220290,"journal":{"name":"2011 11th International Conference on ITS Telecommunications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EWMA based classification of driver state\",\"authors\":\"V. Naumov\",\"doi\":\"10.1109/ITST.2011.6060035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most new methods for safety improvement rely on examination of the vehicle data and monitoring of the driver behaviour. The vehicle data may include steering wheel angle, the brake and gas pedal positions, gear, velocity etc. Driver physiological parameters are acquired using heart rate sensors, electrocardiogram, electromyogram, electroencephalogram, head/eye monitoring and tracking systems. Given a stream of input data the safety system should be able to determine the driver state in real-time. In this paper we use exponentially weighted moving averages for transformation of input data into feature vectors used for classification of driver state and investigate accuracy of this approach for datasets collected in driving simulator.\",\"PeriodicalId\":220290,\"journal\":{\"name\":\"2011 11th International Conference on ITS Telecommunications\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 11th International Conference on ITS Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITST.2011.6060035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on ITS Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITST.2011.6060035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数改进安全的新方法依赖于检查车辆数据和监控驾驶员行为。车辆数据可能包括方向盘角度、刹车和油门踏板位置、档位、速度等。使用心率传感器、心电图、肌电图、脑电图、头/眼监测和跟踪系统获取驾驶员生理参数。给定输入数据流,安全系统应该能够实时确定驾驶员的状态。在本文中,我们使用指数加权移动平均将输入数据转换为用于驾驶员状态分类的特征向量,并研究了该方法对驾驶模拟器中收集的数据集的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EWMA based classification of driver state
Most new methods for safety improvement rely on examination of the vehicle data and monitoring of the driver behaviour. The vehicle data may include steering wheel angle, the brake and gas pedal positions, gear, velocity etc. Driver physiological parameters are acquired using heart rate sensors, electrocardiogram, electromyogram, electroencephalogram, head/eye monitoring and tracking systems. Given a stream of input data the safety system should be able to determine the driver state in real-time. In this paper we use exponentially weighted moving averages for transformation of input data into feature vectors used for classification of driver state and investigate accuracy of this approach for datasets collected in driving simulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From user wishes to system architecture safety for children going to and from school by bus An efficient destination-based data management policy for vehicular networks Joint IP networking and radio architecture for vehicular networks Navigation without GPS: Fake location for mobile phone tracking Analysis of robust collision resolution algorithm with successive interference cancellation and bursty arrivals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1