{"title":"20型特斯拉环形磁体大电流传输开关系统","authors":"R. Sledge, K. Hsieh, W. Weldon, M. Werst","doi":"10.1109/FUSION.1991.218873","DOIUrl":null,"url":null,"abstract":"The Ignition Technology Demonstration (ITD) is a 0.06 scale prototype toroidal field magnet of the proposed full-scale IGNITEX (Ignition Experiment) tokamak. The goal of ITD is to achieve an on-axis magnetic confinement field of 20 T while demonstrating the magnet's ability to withstand high magnetic and thermal stresses. To accomplish this task, a peak current of 9 MA must be transferred from six balanced homopolar generator (HPG) busbar circuits to the liquid nitrogen (LN/sub 2/) cooled magnet. To date the system has delivered pulses of up to 8.14 MA to the magnet, producing an on-axis field of 18.1 T. In order to properly synchronize current transfer, an explosive closing switch is used for each of the six independent HPG/busbar circuits. The switches operate by explosively driving a scalloped copper ring into a tapered annular gap made up of two copper alloy rings. With a jitter time of 10 mu s, parallel circuit synchronization is better than 0.03% relative to the current rise time. The excellent performance of the switches during discharges of up to 8.14 MA is attributed to several design features which assure proper current distribution. Busbar design considerations are discussed, and the performance of the switches and busbars is described.<<ETX>>","PeriodicalId":318951,"journal":{"name":"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High current transmission and switching system for prototype 20 Tesla toroidal magnet\",\"authors\":\"R. Sledge, K. Hsieh, W. Weldon, M. Werst\",\"doi\":\"10.1109/FUSION.1991.218873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ignition Technology Demonstration (ITD) is a 0.06 scale prototype toroidal field magnet of the proposed full-scale IGNITEX (Ignition Experiment) tokamak. The goal of ITD is to achieve an on-axis magnetic confinement field of 20 T while demonstrating the magnet's ability to withstand high magnetic and thermal stresses. To accomplish this task, a peak current of 9 MA must be transferred from six balanced homopolar generator (HPG) busbar circuits to the liquid nitrogen (LN/sub 2/) cooled magnet. To date the system has delivered pulses of up to 8.14 MA to the magnet, producing an on-axis field of 18.1 T. In order to properly synchronize current transfer, an explosive closing switch is used for each of the six independent HPG/busbar circuits. The switches operate by explosively driving a scalloped copper ring into a tapered annular gap made up of two copper alloy rings. With a jitter time of 10 mu s, parallel circuit synchronization is better than 0.03% relative to the current rise time. The excellent performance of the switches during discharges of up to 8.14 MA is attributed to several design features which assure proper current distribution. Busbar design considerations are discussed, and the performance of the switches and busbars is described.<<ETX>>\",\"PeriodicalId\":318951,\"journal\":{\"name\":\"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUSION.1991.218873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUSION.1991.218873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High current transmission and switching system for prototype 20 Tesla toroidal magnet
The Ignition Technology Demonstration (ITD) is a 0.06 scale prototype toroidal field magnet of the proposed full-scale IGNITEX (Ignition Experiment) tokamak. The goal of ITD is to achieve an on-axis magnetic confinement field of 20 T while demonstrating the magnet's ability to withstand high magnetic and thermal stresses. To accomplish this task, a peak current of 9 MA must be transferred from six balanced homopolar generator (HPG) busbar circuits to the liquid nitrogen (LN/sub 2/) cooled magnet. To date the system has delivered pulses of up to 8.14 MA to the magnet, producing an on-axis field of 18.1 T. In order to properly synchronize current transfer, an explosive closing switch is used for each of the six independent HPG/busbar circuits. The switches operate by explosively driving a scalloped copper ring into a tapered annular gap made up of two copper alloy rings. With a jitter time of 10 mu s, parallel circuit synchronization is better than 0.03% relative to the current rise time. The excellent performance of the switches during discharges of up to 8.14 MA is attributed to several design features which assure proper current distribution. Busbar design considerations are discussed, and the performance of the switches and busbars is described.<>