基于自组织特征聚类的轮廓检测

Yu Ma, Xiaodong Gu, Yuanyuan Wang
{"title":"基于自组织特征聚类的轮廓检测","authors":"Yu Ma, Xiaodong Gu, Yuanyuan Wang","doi":"10.1109/ICNC.2007.316","DOIUrl":null,"url":null,"abstract":"The real vision system has a well-developed ability to detect multiple contours and recognize various objects in images. Previous simulation models to perform this process often employ image segmentation or contour integration algorithms. In this paper a new model is proposed to separate individual object contours from the background by the feature clustering. The model is inspired by the contrast mechanism and the self-organizing characteristic of the vision system. It can group edge elements with similar local features together automatically. The self-organizing map (SOM) is used in the model to classify the edge elements in the image. Experimental results show that the object contours can be separated effectively by this model. The model can be used to supply useful information to higher-level visual mechanism for better object recognition.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Contour Detection Based on Self-Organizing Feature Clustering\",\"authors\":\"Yu Ma, Xiaodong Gu, Yuanyuan Wang\",\"doi\":\"10.1109/ICNC.2007.316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The real vision system has a well-developed ability to detect multiple contours and recognize various objects in images. Previous simulation models to perform this process often employ image segmentation or contour integration algorithms. In this paper a new model is proposed to separate individual object contours from the background by the feature clustering. The model is inspired by the contrast mechanism and the self-organizing characteristic of the vision system. It can group edge elements with similar local features together automatically. The self-organizing map (SOM) is used in the model to classify the edge elements in the image. Experimental results show that the object contours can be separated effectively by this model. The model can be used to supply useful information to higher-level visual mechanism for better object recognition.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

真实视觉系统具有很好的检测多种轮廓和识别图像中各种物体的能力。以前的仿真模型通常采用图像分割或轮廓积分算法来执行这一过程。本文提出了一种基于特征聚类的目标轮廓分离模型。该模型的灵感来源于视觉系统的对比机制和自组织特性。它可以自动将具有相似局部特征的边缘元素分组在一起。该模型使用自组织映射(SOM)对图像中的边缘元素进行分类。实验结果表明,该模型能有效地分离出目标轮廓。该模型可以为更高层次的视觉机制提供有用的信息,以更好地进行目标识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contour Detection Based on Self-Organizing Feature Clustering
The real vision system has a well-developed ability to detect multiple contours and recognize various objects in images. Previous simulation models to perform this process often employ image segmentation or contour integration algorithms. In this paper a new model is proposed to separate individual object contours from the background by the feature clustering. The model is inspired by the contrast mechanism and the self-organizing characteristic of the vision system. It can group edge elements with similar local features together automatically. The self-organizing map (SOM) is used in the model to classify the edge elements in the image. Experimental results show that the object contours can be separated effectively by this model. The model can be used to supply useful information to higher-level visual mechanism for better object recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1