{"title":"用卫星红外测深仪模拟火山灰云亮度温度光谱的最佳火山灰粒子折射率模型","authors":"H. Ishimoto, M. Hayashi, Y. Mano","doi":"10.5194/AMT-2021-103","DOIUrl":null,"url":null,"abstract":"Abstract. Using data from the Infrared Atmospheric Sounding Interferometer (IASI) measurements of volcanic ash clouds and radiative transfer calculations, we identify the optimal refractive index model for simulating the measured brightness temperature spectrum of volcanic ash material. We assume that the optimal refractive index model has the smallest root mean square of the brightness temperature difference between measurements and simulations for channels in the wavenumber range of 750–1400 cm−1 and compare 21 refractive index models for optical properties of ash particles, including recently published models. From the results of numerical simulations for 164 pixels of IASI measurements for ash clouds from 11 volcanoes, we found that the measured brightness temperature spectrum could be well simulated using certain newly established refractive index models. In the cases of Eyjafjallajökull and Grímsvötn ash clouds, the optimal refractive index models determined through numerical simulation correspond to those deduced from the chemical composition of ash samples for the same volcanic eruption events. This finding suggests that infrared sounder measurement of volcanic ash clouds is an effective approach to estimating the optimal refractive index model. However, discrepancies between the estimated refractive index models based on satellite measurements and the associated volcanic rock types were observed for some volcanic events.\n","PeriodicalId":441110,"journal":{"name":"Atmospheric Measurement Techniques Discussions","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal ash particle refractive index model for simulating the brightness temperature spectrum of volcanic ash clouds from satellite infrared sounder measurements\",\"authors\":\"H. Ishimoto, M. Hayashi, Y. Mano\",\"doi\":\"10.5194/AMT-2021-103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Using data from the Infrared Atmospheric Sounding Interferometer (IASI) measurements of volcanic ash clouds and radiative transfer calculations, we identify the optimal refractive index model for simulating the measured brightness temperature spectrum of volcanic ash material. We assume that the optimal refractive index model has the smallest root mean square of the brightness temperature difference between measurements and simulations for channels in the wavenumber range of 750–1400 cm−1 and compare 21 refractive index models for optical properties of ash particles, including recently published models. From the results of numerical simulations for 164 pixels of IASI measurements for ash clouds from 11 volcanoes, we found that the measured brightness temperature spectrum could be well simulated using certain newly established refractive index models. In the cases of Eyjafjallajökull and Grímsvötn ash clouds, the optimal refractive index models determined through numerical simulation correspond to those deduced from the chemical composition of ash samples for the same volcanic eruption events. This finding suggests that infrared sounder measurement of volcanic ash clouds is an effective approach to estimating the optimal refractive index model. However, discrepancies between the estimated refractive index models based on satellite measurements and the associated volcanic rock types were observed for some volcanic events.\\n\",\"PeriodicalId\":441110,\"journal\":{\"name\":\"Atmospheric Measurement Techniques Discussions\",\"volume\":\"213 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques Discussions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/AMT-2021-103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/AMT-2021-103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal ash particle refractive index model for simulating the brightness temperature spectrum of volcanic ash clouds from satellite infrared sounder measurements
Abstract. Using data from the Infrared Atmospheric Sounding Interferometer (IASI) measurements of volcanic ash clouds and radiative transfer calculations, we identify the optimal refractive index model for simulating the measured brightness temperature spectrum of volcanic ash material. We assume that the optimal refractive index model has the smallest root mean square of the brightness temperature difference between measurements and simulations for channels in the wavenumber range of 750–1400 cm−1 and compare 21 refractive index models for optical properties of ash particles, including recently published models. From the results of numerical simulations for 164 pixels of IASI measurements for ash clouds from 11 volcanoes, we found that the measured brightness temperature spectrum could be well simulated using certain newly established refractive index models. In the cases of Eyjafjallajökull and Grímsvötn ash clouds, the optimal refractive index models determined through numerical simulation correspond to those deduced from the chemical composition of ash samples for the same volcanic eruption events. This finding suggests that infrared sounder measurement of volcanic ash clouds is an effective approach to estimating the optimal refractive index model. However, discrepancies between the estimated refractive index models based on satellite measurements and the associated volcanic rock types were observed for some volcanic events.