海报:用半可靠的空中多播模型加速跨设备联邦学习

Yunzhi Lin, Shouxi Luo
{"title":"海报:用半可靠的空中多播模型加速跨设备联邦学习","authors":"Yunzhi Lin, Shouxi Luo","doi":"10.1109/ICNP52444.2021.9651964","DOIUrl":null,"url":null,"abstract":"To achieve efficient model multicast for cross-device Federated Learning (FL) over shared wireless channels, we propose SRMP, a transport protocol that performs semi-reliable model multicast over the air by leveraging existing PHY-aided wireless multicast techniques. The preliminary study shows that, with novel designs, SRMP could reduce the communication time involved in each round of training significantly.","PeriodicalId":343813,"journal":{"name":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Poster: Accelerate Cross-Device Federated Learning With Semi-Reliable Model Multicast Over The Air\",\"authors\":\"Yunzhi Lin, Shouxi Luo\",\"doi\":\"10.1109/ICNP52444.2021.9651964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve efficient model multicast for cross-device Federated Learning (FL) over shared wireless channels, we propose SRMP, a transport protocol that performs semi-reliable model multicast over the air by leveraging existing PHY-aided wireless multicast techniques. The preliminary study shows that, with novel designs, SRMP could reduce the communication time involved in each round of training significantly.\",\"PeriodicalId\":343813,\"journal\":{\"name\":\"2021 IEEE 29th International Conference on Network Protocols (ICNP)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 29th International Conference on Network Protocols (ICNP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNP52444.2021.9651964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP52444.2021.9651964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了在共享无线信道上实现跨设备联邦学习(FL)的高效模型组播,我们提出了SRMP,这是一种利用现有的物理辅助无线组播技术在空中执行半可靠模型组播的传输协议。初步研究表明,通过新颖的设计,SRMP可以显著减少每轮训练的沟通时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poster: Accelerate Cross-Device Federated Learning With Semi-Reliable Model Multicast Over The Air
To achieve efficient model multicast for cross-device Federated Learning (FL) over shared wireless channels, we propose SRMP, a transport protocol that performs semi-reliable model multicast over the air by leveraging existing PHY-aided wireless multicast techniques. The preliminary study shows that, with novel designs, SRMP could reduce the communication time involved in each round of training significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploiting WiFi AP for Simultaneous Data Dissemination among WiFi and ZigBee Devices Highway On-Ramp Merging for Mixed Traffic: Recent Advances and Future Trends Generalizable and Interpretable Deep Learning for Network Congestion Prediction DNSonChain: Delegating Privacy-Preserved DNS Resolution to Blockchain ISP Self-Operated BGP Anomaly Detection Based on Weakly Supervised Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1