{"title":"WiseCam:明智地调整无线泛倾斜相机的成本效益的移动对象跟踪","authors":"Jinlong E, Lin He, Zhenhua Li, Yunhao Liu","doi":"10.1109/INFOCOM53939.2023.10228926","DOIUrl":null,"url":null,"abstract":"With desired functionality of moving object tracking, wireless pan-tilt cameras are able to play critical roles in a growing diversity of surveillance environments. However, today's pan-tilt cameras oftentimes underperform when tracking frequently moving objects like humans – they are prone to lose sight of objects and bring about excessive mechanical rotations that are especially detrimental to those energy-constrained outdoor scenarios. The ineffectiveness and high cost of state-of-the-art tracking approaches are rooted in their adherence to the industry's simplicity principle, which leads to their stateless nature, performing gimbal rotations based only on the latest object detection. To address the issues, we design and implement WiseCam that wisely tunes the pan-tilt cameras to minimize mechanical rotation costs while maintaining long-term object tracking. We examine the performance of WiseCam by experiments on two types of pan-tilt cameras with different motors. Results show that WiseCam significantly outperforms the state-of-the-art tracking approaches on both tracking duration and power consumption.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"WiseCam: Wisely Tuning Wireless Pan-Tilt Cameras for Cost-Effective Moving Object Tracking\",\"authors\":\"Jinlong E, Lin He, Zhenhua Li, Yunhao Liu\",\"doi\":\"10.1109/INFOCOM53939.2023.10228926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With desired functionality of moving object tracking, wireless pan-tilt cameras are able to play critical roles in a growing diversity of surveillance environments. However, today's pan-tilt cameras oftentimes underperform when tracking frequently moving objects like humans – they are prone to lose sight of objects and bring about excessive mechanical rotations that are especially detrimental to those energy-constrained outdoor scenarios. The ineffectiveness and high cost of state-of-the-art tracking approaches are rooted in their adherence to the industry's simplicity principle, which leads to their stateless nature, performing gimbal rotations based only on the latest object detection. To address the issues, we design and implement WiseCam that wisely tunes the pan-tilt cameras to minimize mechanical rotation costs while maintaining long-term object tracking. We examine the performance of WiseCam by experiments on two types of pan-tilt cameras with different motors. Results show that WiseCam significantly outperforms the state-of-the-art tracking approaches on both tracking duration and power consumption.\",\"PeriodicalId\":387707,\"journal\":{\"name\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM53939.2023.10228926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM53939.2023.10228926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
With desired functionality of moving object tracking, wireless pan-tilt cameras are able to play critical roles in a growing diversity of surveillance environments. However, today's pan-tilt cameras oftentimes underperform when tracking frequently moving objects like humans – they are prone to lose sight of objects and bring about excessive mechanical rotations that are especially detrimental to those energy-constrained outdoor scenarios. The ineffectiveness and high cost of state-of-the-art tracking approaches are rooted in their adherence to the industry's simplicity principle, which leads to their stateless nature, performing gimbal rotations based only on the latest object detection. To address the issues, we design and implement WiseCam that wisely tunes the pan-tilt cameras to minimize mechanical rotation costs while maintaining long-term object tracking. We examine the performance of WiseCam by experiments on two types of pan-tilt cameras with different motors. Results show that WiseCam significantly outperforms the state-of-the-art tracking approaches on both tracking duration and power consumption.