可持续建筑中二氧化碳减排装置的经济影响

C. Ikedi
{"title":"可持续建筑中二氧化碳减排装置的经济影响","authors":"C. Ikedi","doi":"10.5772/INTECHOPEN.78960","DOIUrl":null,"url":null,"abstract":"Recent innovations in residential and commercial buildings involve the integration of low-carbon devices for the purpose of mitigating CO2 footprints. Photovoltaic (PV) modules are now commonly integrated into parts of the fabric of a building as roof tiles, asphalt shingles, facade materials or shading elements and usually blends with the aesthetics of applied buildings. This is referred to as building-integrated photovoltaics (BIPV), and when used in this way, the integrated PV modules replace conventional building envelope materials, thereby benefiting from capital cost reduction. One key aim of BIPV technology on applied buildings is sustainability, and according to recent research, ’sustainable buildings perform better than conventional buildings in terms of well-being of the occupants’. This study evaluates and assesses the economic impact of BIPV projects as a low-carbon technology on applied buildings for use by prospective BIPV investors in the building sector.","PeriodicalId":236689,"journal":{"name":"Low Carbon Transition - Technical, Economic and Policy Assessment","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Economic Impact of CO2 Mitigation Devices in Sustainable Buildings\",\"authors\":\"C. Ikedi\",\"doi\":\"10.5772/INTECHOPEN.78960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent innovations in residential and commercial buildings involve the integration of low-carbon devices for the purpose of mitigating CO2 footprints. Photovoltaic (PV) modules are now commonly integrated into parts of the fabric of a building as roof tiles, asphalt shingles, facade materials or shading elements and usually blends with the aesthetics of applied buildings. This is referred to as building-integrated photovoltaics (BIPV), and when used in this way, the integrated PV modules replace conventional building envelope materials, thereby benefiting from capital cost reduction. One key aim of BIPV technology on applied buildings is sustainability, and according to recent research, ’sustainable buildings perform better than conventional buildings in terms of well-being of the occupants’. This study evaluates and assesses the economic impact of BIPV projects as a low-carbon technology on applied buildings for use by prospective BIPV investors in the building sector.\",\"PeriodicalId\":236689,\"journal\":{\"name\":\"Low Carbon Transition - Technical, Economic and Policy Assessment\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Low Carbon Transition - Technical, Economic and Policy Assessment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.78960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Low Carbon Transition - Technical, Economic and Policy Assessment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.78960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近住宅和商业建筑的创新涉及到低碳设备的整合,以减少二氧化碳的足迹。光伏(PV)模块现在通常作为屋顶瓦片、沥青瓦、立面材料或遮阳元素集成到建筑物的部分结构中,并且通常与应用建筑物的美学相融合。这被称为建筑集成光伏(BIPV),当以这种方式使用时,集成光伏模块取代了传统的建筑围护结构材料,从而受益于资本成本的降低。BIPV技术在应用建筑上的一个关键目标是可持续性,根据最近的研究,“可持续建筑在居住者的福祉方面比传统建筑表现得更好”。本研究评估和评估了BIPV项目作为一种低碳技术对应用建筑的经济影响,供潜在的BIPV投资者在建筑领域使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Economic Impact of CO2 Mitigation Devices in Sustainable Buildings
Recent innovations in residential and commercial buildings involve the integration of low-carbon devices for the purpose of mitigating CO2 footprints. Photovoltaic (PV) modules are now commonly integrated into parts of the fabric of a building as roof tiles, asphalt shingles, facade materials or shading elements and usually blends with the aesthetics of applied buildings. This is referred to as building-integrated photovoltaics (BIPV), and when used in this way, the integrated PV modules replace conventional building envelope materials, thereby benefiting from capital cost reduction. One key aim of BIPV technology on applied buildings is sustainability, and according to recent research, ’sustainable buildings perform better than conventional buildings in terms of well-being of the occupants’. This study evaluates and assesses the economic impact of BIPV projects as a low-carbon technology on applied buildings for use by prospective BIPV investors in the building sector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
QGreen Low-Carbon Technology: Cooling Greenhouses and Barns Using Geothermal Energy and Seawater Bittern Desiccant Bioelectricity’s Potential Availability from Last Brazilian Sugarcane Harvest Economic Impact of CO2 Mitigation Devices in Sustainable Buildings Innovations for a Low-Carbon Economy in Asia: Past, Present, and Future Introductory Chapter: Low Carbon Economy. An Overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1