{"title":"南洋理工大学先进显示器实验室的最新研究","authors":"P. Surman, X. Zhang, Weitao Song, Xinxing Xia, Shizheng Wang, Yuanjin Zheng","doi":"10.1109/3DTV.2018.8478440","DOIUrl":null,"url":null,"abstract":"There are many basic ways of providing a glasses-free 3D display and the three methods considered most likely to succeed commercially were chosen for our current research, these are; multi-layer light field, head tracked and super multiview displays. Our multi-layer light field display enables a far smaller form factor than other types, and faster algorithms along with horizontal parallax-only will considerably speed-up computation time. A spin-off of this technology is a near-eye display that provides focus cues for maximizing user comfort. Head tracked displays use liquid crystal display panels illuminated with a directional backlight to produce multiple sets of exit pupil pairs that follow the user’s eyes under the control of a head position tracker. Our super multiview display (SMV) system uses high frame-rate projectors for spatio-temporal multiplexing that give dense viewing zones with no accommodation/convergence (A/C) conflict. Bandwidth reduction is achieved by discarding redundant information at capture. The status of the latest prototypes and their performance is described; and we conclude by indicating the future directions of our research.","PeriodicalId":267389,"journal":{"name":"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LATEST RESEARCH AT THE ADVANCED DISPLAYS LABORATORY AT NTU\",\"authors\":\"P. Surman, X. Zhang, Weitao Song, Xinxing Xia, Shizheng Wang, Yuanjin Zheng\",\"doi\":\"10.1109/3DTV.2018.8478440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many basic ways of providing a glasses-free 3D display and the three methods considered most likely to succeed commercially were chosen for our current research, these are; multi-layer light field, head tracked and super multiview displays. Our multi-layer light field display enables a far smaller form factor than other types, and faster algorithms along with horizontal parallax-only will considerably speed-up computation time. A spin-off of this technology is a near-eye display that provides focus cues for maximizing user comfort. Head tracked displays use liquid crystal display panels illuminated with a directional backlight to produce multiple sets of exit pupil pairs that follow the user’s eyes under the control of a head position tracker. Our super multiview display (SMV) system uses high frame-rate projectors for spatio-temporal multiplexing that give dense viewing zones with no accommodation/convergence (A/C) conflict. Bandwidth reduction is achieved by discarding redundant information at capture. The status of the latest prototypes and their performance is described; and we conclude by indicating the future directions of our research.\",\"PeriodicalId\":267389,\"journal\":{\"name\":\"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DTV.2018.8478440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DTV.2018.8478440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LATEST RESEARCH AT THE ADVANCED DISPLAYS LABORATORY AT NTU
There are many basic ways of providing a glasses-free 3D display and the three methods considered most likely to succeed commercially were chosen for our current research, these are; multi-layer light field, head tracked and super multiview displays. Our multi-layer light field display enables a far smaller form factor than other types, and faster algorithms along with horizontal parallax-only will considerably speed-up computation time. A spin-off of this technology is a near-eye display that provides focus cues for maximizing user comfort. Head tracked displays use liquid crystal display panels illuminated with a directional backlight to produce multiple sets of exit pupil pairs that follow the user’s eyes under the control of a head position tracker. Our super multiview display (SMV) system uses high frame-rate projectors for spatio-temporal multiplexing that give dense viewing zones with no accommodation/convergence (A/C) conflict. Bandwidth reduction is achieved by discarding redundant information at capture. The status of the latest prototypes and their performance is described; and we conclude by indicating the future directions of our research.