索引时间序列中r树填充的改进sort - tile - recurrent算法

Bui Cong Giao, D. T. Anh
{"title":"索引时间序列中r树填充的改进sort - tile - recurrent算法","authors":"Bui Cong Giao, D. T. Anh","doi":"10.1109/RIVF.2015.7049885","DOIUrl":null,"url":null,"abstract":"The Sort-Tile-Recursive (STR) algorithm is a simple and efficient bulk-loading method for spatial or multidimensional data management using R-tree. In this paper, we put forward an approach to improve the STR algorithm for packing R-trees in indexing time series by some strategies choosing coordinates to partition spatial objects into nodes of R-trees. Every strategy has its own method to connect ends of consecutive runs into a suboptimum space-filling curve. We will compare the proposed approach with previous works in terms of space storing the index structure and runtime for range search on R-trees. Extensive experiments are carried out on many streaming time series datasets to evaluate our improved STR methods and previous methods unbiasedly and precisely. The experimental results show that the improved STR methods outperform previous methods.","PeriodicalId":166971,"journal":{"name":"The 2015 IEEE RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Improving Sort-Tile-Recusive algorithm for R-tree packing in indexing time series\",\"authors\":\"Bui Cong Giao, D. T. Anh\",\"doi\":\"10.1109/RIVF.2015.7049885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Sort-Tile-Recursive (STR) algorithm is a simple and efficient bulk-loading method for spatial or multidimensional data management using R-tree. In this paper, we put forward an approach to improve the STR algorithm for packing R-trees in indexing time series by some strategies choosing coordinates to partition spatial objects into nodes of R-trees. Every strategy has its own method to connect ends of consecutive runs into a suboptimum space-filling curve. We will compare the proposed approach with previous works in terms of space storing the index structure and runtime for range search on R-trees. Extensive experiments are carried out on many streaming time series datasets to evaluate our improved STR methods and previous methods unbiasedly and precisely. The experimental results show that the improved STR methods outperform previous methods.\",\"PeriodicalId\":166971,\"journal\":{\"name\":\"The 2015 IEEE RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2015 IEEE RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF.2015.7049885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2015 IEEE RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF.2015.7049885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

STR (Sort-Tile-Recursive)算法是一种简单有效的基于r树的空间或多维数据管理的批量加载方法。本文提出了一种改进STR算法在索引时间序列中填充r树的方法,通过选择坐标将空间对象划分为r树的节点。每种策略都有自己的方法将连续运行的末端连接到次优空间填充曲线中。我们将在存储索引结构的空间和r树范围搜索的运行时间方面,将所提出的方法与之前的工作进行比较。在大量的流时间序列数据集上进行了大量的实验,对改进的STR方法和以前的方法进行了公正、准确的评价。实验结果表明,改进的STR方法优于以前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Sort-Tile-Recusive algorithm for R-tree packing in indexing time series
The Sort-Tile-Recursive (STR) algorithm is a simple and efficient bulk-loading method for spatial or multidimensional data management using R-tree. In this paper, we put forward an approach to improve the STR algorithm for packing R-trees in indexing time series by some strategies choosing coordinates to partition spatial objects into nodes of R-trees. Every strategy has its own method to connect ends of consecutive runs into a suboptimum space-filling curve. We will compare the proposed approach with previous works in terms of space storing the index structure and runtime for range search on R-trees. Extensive experiments are carried out on many streaming time series datasets to evaluate our improved STR methods and previous methods unbiasedly and precisely. The experimental results show that the improved STR methods outperform previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust and high capacity watermarking for image based on DWT-SVD SentiVoice - a system for querying hotel service reviews via phone On the design of energy efficient environment monitoring station and data collection network based on ubiquitous wireless sensor networks Identifying semantic and syntactic relations from text documents Quantitative evaluation of facial paralysis using tracking method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1