使用机器学习预测结肠癌患者的生存期

Anoosha Tahir, B. Wajid, Faria Anwar, F. G. Awan, Umar Rashid, Fareeha Afzal, Abdul Rauf Anwar, Imran Wajid
{"title":"使用机器学习预测结肠癌患者的生存期","authors":"Anoosha Tahir, B. Wajid, Faria Anwar, F. G. Awan, Umar Rashid, Fareeha Afzal, Abdul Rauf Anwar, Imran Wajid","doi":"10.1109/ICEPECC57281.2023.10209530","DOIUrl":null,"url":null,"abstract":"Knowledge of survivability is crucial for cancer patients and their families. This paper employs the Surveillance, Epidemiology, and End Results (SEER) database to predict the survivability of colon cancer patients. The research presents four experiments each improving over the previous one, attempting to develop the optimal model. Here (i) experiment 1 conducts regression analyses; (ii) experiment 2 conducts multinomial classification; (iii) experiment 3 emphasizes a multi-tier prediction framework and lastly; (iv) experiment 4 concludes by developing a hybrid model for better prediction of survivability.","PeriodicalId":102289,"journal":{"name":"2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Survivability Period Prediction in Colon Cancer Patients using Machine Learning\",\"authors\":\"Anoosha Tahir, B. Wajid, Faria Anwar, F. G. Awan, Umar Rashid, Fareeha Afzal, Abdul Rauf Anwar, Imran Wajid\",\"doi\":\"10.1109/ICEPECC57281.2023.10209530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge of survivability is crucial for cancer patients and their families. This paper employs the Surveillance, Epidemiology, and End Results (SEER) database to predict the survivability of colon cancer patients. The research presents four experiments each improving over the previous one, attempting to develop the optimal model. Here (i) experiment 1 conducts regression analyses; (ii) experiment 2 conducts multinomial classification; (iii) experiment 3 emphasizes a multi-tier prediction framework and lastly; (iv) experiment 4 concludes by developing a hybrid model for better prediction of survivability.\",\"PeriodicalId\":102289,\"journal\":{\"name\":\"2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEPECC57281.2023.10209530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPECC57281.2023.10209530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对癌症患者及其家属来说,生存能力的知识至关重要。本文采用监测、流行病学和最终结果(SEER)数据库来预测结肠癌患者的生存能力。本研究提出了四个实验,每个实验都在前一个实验的基础上进行改进,试图建立最优模型。这里(i)实验1进行回归分析;(ii)实验2进行多项分类;(iii)实验3强调多层预测框架;(iv)实验4的结论是建立一个混合模型,以更好地预测生存能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Survivability Period Prediction in Colon Cancer Patients using Machine Learning
Knowledge of survivability is crucial for cancer patients and their families. This paper employs the Surveillance, Epidemiology, and End Results (SEER) database to predict the survivability of colon cancer patients. The research presents four experiments each improving over the previous one, attempting to develop the optimal model. Here (i) experiment 1 conducts regression analyses; (ii) experiment 2 conducts multinomial classification; (iii) experiment 3 emphasizes a multi-tier prediction framework and lastly; (iv) experiment 4 concludes by developing a hybrid model for better prediction of survivability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generative Adversarial Networks (GANs) Video Framework: A Systematic Literature Review A Novel Decentralized Coordination Control Scheme for the Complex Transactive Energy Prosumers Biometric Electroencephalogram Based Random Number Generator Seasonal Impact on the Storage Capacity Sizing in a Renewable Energy System Under the Condition of Safe Operation Investigation of Optimum Phase Change Material for PV Panels in Malaysian Climatic Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1