基于支持向量机的短期风电预测

Jianwu Zeng, W. Qiao
{"title":"基于支持向量机的短期风电预测","authors":"Jianwu Zeng, W. Qiao","doi":"10.1109/PSCE.2011.5772573","DOIUrl":null,"url":null,"abstract":"This paper proposes a support vector machine (SVM)-based statistical model for wind power forecasting (WPF). Instead of predicting wind power directly, the proposed model first predicts the wind speed, which is then used to predict the wind power by using the power-wind speed characteristics of the wind turbine generators. Simulation studies are carried out to validate the proposed model for very short-term and short-term WPF by using the data obtained from the National Renewable Energy Laboratory (NREL). Results show that the proposed model is accurate for very short-term and short-term WPF and outperforms the persistence model as well as the radial basis function neural network-based model.","PeriodicalId":120665,"journal":{"name":"2011 IEEE/PES Power Systems Conference and Exposition","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"92","resultStr":"{\"title\":\"Support vector machine-based short-term wind power forecasting\",\"authors\":\"Jianwu Zeng, W. Qiao\",\"doi\":\"10.1109/PSCE.2011.5772573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a support vector machine (SVM)-based statistical model for wind power forecasting (WPF). Instead of predicting wind power directly, the proposed model first predicts the wind speed, which is then used to predict the wind power by using the power-wind speed characteristics of the wind turbine generators. Simulation studies are carried out to validate the proposed model for very short-term and short-term WPF by using the data obtained from the National Renewable Energy Laboratory (NREL). Results show that the proposed model is accurate for very short-term and short-term WPF and outperforms the persistence model as well as the radial basis function neural network-based model.\",\"PeriodicalId\":120665,\"journal\":{\"name\":\"2011 IEEE/PES Power Systems Conference and Exposition\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"92\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/PES Power Systems Conference and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PSCE.2011.5772573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/PES Power Systems Conference and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PSCE.2011.5772573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 92

摘要

提出了一种基于支持向量机(SVM)的风电功率预测统计模型。该模型不是直接预测风力,而是先预测风速,然后利用风力发电机组的功率-风速特性来预测风力。通过使用国家可再生能源实验室(NREL)的数据,对所提出的模型进行了非常短期和短期WPF的模拟研究。结果表明,该模型对极短期WPF和短期WPF均具有较高的准确性,且优于基于径向基函数的神经网络模型和持久模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Support vector machine-based short-term wind power forecasting
This paper proposes a support vector machine (SVM)-based statistical model for wind power forecasting (WPF). Instead of predicting wind power directly, the proposed model first predicts the wind speed, which is then used to predict the wind power by using the power-wind speed characteristics of the wind turbine generators. Simulation studies are carried out to validate the proposed model for very short-term and short-term WPF by using the data obtained from the National Renewable Energy Laboratory (NREL). Results show that the proposed model is accurate for very short-term and short-term WPF and outperforms the persistence model as well as the radial basis function neural network-based model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Testing the “smarts” in the smart T & D grid Similarity measures in Small World Stratification for distribution fault diagnosis Market-based transmission expansion planning Customer-centered control system for intelligent and green building with heuristic optimization Concepts of FACTS controllers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1