基于多实例学习的自适应均值漂移图像分割

I. Gondra, Tao Xu
{"title":"基于多实例学习的自适应均值漂移图像分割","authors":"I. Gondra, Tao Xu","doi":"10.1109/ICDIM.2008.4746716","DOIUrl":null,"url":null,"abstract":"Mean shift clustering tends to generate accurate segmentations of color images, but choosing the scale parameters remains a difficult problem which has a strong impact on its performance. We present an adaptive image segmentation framework that achieves a task-dependent top-down adaption of the scale parameters. The proposed method can be used under the context of a relevance feedback-based content-based image retrieval system. Standard mean shift clustering is used to generate an initial segmentation of the images in the database. After processing a query, the user gives the usual relevance feedback by labeling each of the images in the corresponding retrieval set as positive or negative, based on whether or not it contains a particular object of interest. In our approach, this feedback obtained as a by-product of user interaction with the system is then used in conjunction with multiple instance learning to induce a mapping from the object of interest to the scale parameters. The initial segmentation of the object of interest in each of the positive images in the database is then revised. This is done offline and is completely transparent to the user. Preliminary results indicate that the proposed method is capable of learning more informed segmentation parameters.","PeriodicalId":415013,"journal":{"name":"2008 Third International Conference on Digital Information Management","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Adaptive mean shift-based image segmentation using multiple instance learning\",\"authors\":\"I. Gondra, Tao Xu\",\"doi\":\"10.1109/ICDIM.2008.4746716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mean shift clustering tends to generate accurate segmentations of color images, but choosing the scale parameters remains a difficult problem which has a strong impact on its performance. We present an adaptive image segmentation framework that achieves a task-dependent top-down adaption of the scale parameters. The proposed method can be used under the context of a relevance feedback-based content-based image retrieval system. Standard mean shift clustering is used to generate an initial segmentation of the images in the database. After processing a query, the user gives the usual relevance feedback by labeling each of the images in the corresponding retrieval set as positive or negative, based on whether or not it contains a particular object of interest. In our approach, this feedback obtained as a by-product of user interaction with the system is then used in conjunction with multiple instance learning to induce a mapping from the object of interest to the scale parameters. The initial segmentation of the object of interest in each of the positive images in the database is then revised. This is done offline and is completely transparent to the user. Preliminary results indicate that the proposed method is capable of learning more informed segmentation parameters.\",\"PeriodicalId\":415013,\"journal\":{\"name\":\"2008 Third International Conference on Digital Information Management\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Third International Conference on Digital Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2008.4746716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Third International Conference on Digital Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2008.4746716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

均值移位聚类算法能够对彩色图像进行准确的分割,但尺度参数的选择是影响聚类算法性能的一个难点。我们提出了一种自适应图像分割框架,该框架实现了任务相关的自顶向下的尺度参数自适应。该方法可用于基于相关反馈的基于内容的图像检索系统。使用标准均值偏移聚类对数据库中的图像进行初始分割。在处理查询之后,用户根据是否包含感兴趣的特定对象,将相应检索集中的每个图像标记为积极或消极,从而给出通常的相关性反馈。在我们的方法中,这种反馈作为用户与系统交互的副产品,然后与多实例学习结合使用,以诱导从感兴趣的对象到比例参数的映射。然后修改数据库中每个正图像中感兴趣对象的初始分割。这是离线完成的,对用户是完全透明的。初步结果表明,该方法能够学习到更多的信息分割参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive mean shift-based image segmentation using multiple instance learning
Mean shift clustering tends to generate accurate segmentations of color images, but choosing the scale parameters remains a difficult problem which has a strong impact on its performance. We present an adaptive image segmentation framework that achieves a task-dependent top-down adaption of the scale parameters. The proposed method can be used under the context of a relevance feedback-based content-based image retrieval system. Standard mean shift clustering is used to generate an initial segmentation of the images in the database. After processing a query, the user gives the usual relevance feedback by labeling each of the images in the corresponding retrieval set as positive or negative, based on whether or not it contains a particular object of interest. In our approach, this feedback obtained as a by-product of user interaction with the system is then used in conjunction with multiple instance learning to induce a mapping from the object of interest to the scale parameters. The initial segmentation of the object of interest in each of the positive images in the database is then revised. This is done offline and is completely transparent to the user. Preliminary results indicate that the proposed method is capable of learning more informed segmentation parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Grid-based Semantic Integration and dissemination of medical information A hierarchical model-based system for discovering atypical behavior Geo-information quality assurance in disaster management Remote controlled flying robot platform Ubiquitous computing and android
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1