Ryan Cotterell, Christo Kirov, John Sylak-Glassman, David Yarowsky, Jason Eisner, Mans Hulden
{"title":"SIGMORPHON 2016共享任务-形态反射","authors":"Ryan Cotterell, Christo Kirov, John Sylak-Glassman, David Yarowsky, Jason Eisner, Mans Hulden","doi":"10.18653/v1/W16-2002","DOIUrl":null,"url":null,"abstract":"The 2016 SIGMORPHON Shared Task was devoted to the problem of morphological reinflection. It introduced morphological datasets for 10 languages with diverse ty-pological characteristics. The shared task drew submissions from 9 teams representing 11 institutions reflecting a variety of approaches to addressing supervised learning of reinflection. For the simplest task, in-flection generation from lemmas, the best system averaged 95.56% exact-match accuracy across all languages, ranging from Maltese (88.99%) to Hungarian (99.30%). With the relatively large training datasets provided, recurrent neural network architectures consistently performed best—in fact, there was a significant margin between neural and non-neural approaches. The best neural approach, averaged over all tasks and languages, outperformed the best non-neural one by 13.76% absolute; on individual tasks and languages the gap in accuracy sometimes exceeded 60%. Overall, the results show a strong state of the art, and serve as encouragement for future shared tasks that explore morphological analysis and generation with varying degrees of supervision.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"236","resultStr":"{\"title\":\"The SIGMORPHON 2016 Shared Task—Morphological Reinflection\",\"authors\":\"Ryan Cotterell, Christo Kirov, John Sylak-Glassman, David Yarowsky, Jason Eisner, Mans Hulden\",\"doi\":\"10.18653/v1/W16-2002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 2016 SIGMORPHON Shared Task was devoted to the problem of morphological reinflection. It introduced morphological datasets for 10 languages with diverse ty-pological characteristics. The shared task drew submissions from 9 teams representing 11 institutions reflecting a variety of approaches to addressing supervised learning of reinflection. For the simplest task, in-flection generation from lemmas, the best system averaged 95.56% exact-match accuracy across all languages, ranging from Maltese (88.99%) to Hungarian (99.30%). With the relatively large training datasets provided, recurrent neural network architectures consistently performed best—in fact, there was a significant margin between neural and non-neural approaches. The best neural approach, averaged over all tasks and languages, outperformed the best non-neural one by 13.76% absolute; on individual tasks and languages the gap in accuracy sometimes exceeded 60%. Overall, the results show a strong state of the art, and serve as encouragement for future shared tasks that explore morphological analysis and generation with varying degrees of supervision.\",\"PeriodicalId\":186158,\"journal\":{\"name\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"236\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W16-2002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-2002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The SIGMORPHON 2016 Shared Task—Morphological Reinflection
The 2016 SIGMORPHON Shared Task was devoted to the problem of morphological reinflection. It introduced morphological datasets for 10 languages with diverse ty-pological characteristics. The shared task drew submissions from 9 teams representing 11 institutions reflecting a variety of approaches to addressing supervised learning of reinflection. For the simplest task, in-flection generation from lemmas, the best system averaged 95.56% exact-match accuracy across all languages, ranging from Maltese (88.99%) to Hungarian (99.30%). With the relatively large training datasets provided, recurrent neural network architectures consistently performed best—in fact, there was a significant margin between neural and non-neural approaches. The best neural approach, averaged over all tasks and languages, outperformed the best non-neural one by 13.76% absolute; on individual tasks and languages the gap in accuracy sometimes exceeded 60%. Overall, the results show a strong state of the art, and serve as encouragement for future shared tasks that explore morphological analysis and generation with varying degrees of supervision.