一种高效、准确的PAA滑动窗尺寸优化方法

Jinyang Liu, Chuanlei Zhang, Shanwen Zhang, Weidong Fang
{"title":"一种高效、准确的PAA滑动窗尺寸优化方法","authors":"Jinyang Liu, Chuanlei Zhang, Shanwen Zhang, Weidong Fang","doi":"10.1109/ComComAp.2014.7017211","DOIUrl":null,"url":null,"abstract":"PAA is an important algorithm in time series dimensionality reduction. However, how to determine the sliding window keeps an open issue for PAA and its derivatives. In this paper, a new optimization method to decide the PAA window is proposed based on root mean square distance measure. A rate of information loss is proposed to overcome the scalability issue, which can be used to balance information loss and query performance improvement caused by PAA transformation. Experiment results with a real time series dataset demonstrate that the method is effective and feasible to determine the PAA window size and optimize the whole performance of PAA algorithm.","PeriodicalId":422906,"journal":{"name":"2014 IEEE Computers, Communications and IT Applications Conference","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An efficient and accurate optimization method of sliding window size for PAA\",\"authors\":\"Jinyang Liu, Chuanlei Zhang, Shanwen Zhang, Weidong Fang\",\"doi\":\"10.1109/ComComAp.2014.7017211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PAA is an important algorithm in time series dimensionality reduction. However, how to determine the sliding window keeps an open issue for PAA and its derivatives. In this paper, a new optimization method to decide the PAA window is proposed based on root mean square distance measure. A rate of information loss is proposed to overcome the scalability issue, which can be used to balance information loss and query performance improvement caused by PAA transformation. Experiment results with a real time series dataset demonstrate that the method is effective and feasible to determine the PAA window size and optimize the whole performance of PAA algorithm.\",\"PeriodicalId\":422906,\"journal\":{\"name\":\"2014 IEEE Computers, Communications and IT Applications Conference\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Computers, Communications and IT Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ComComAp.2014.7017211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Computers, Communications and IT Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComComAp.2014.7017211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

PAA算法是一种重要的时间序列降维算法。然而,如何确定滑动窗口对于PAA及其衍生产品来说仍然是一个悬而未决的问题。本文提出了一种基于均方根距离测度的PAA窗口优化确定方法。为了克服可伸缩性问题,提出了一个信息丢失率,可以用来平衡PAA转换带来的信息丢失率和查询性能的提高。在实时序列数据集上的实验结果表明,该方法在确定PAA窗口大小和优化PAA算法整体性能方面是有效可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient and accurate optimization method of sliding window size for PAA
PAA is an important algorithm in time series dimensionality reduction. However, how to determine the sliding window keeps an open issue for PAA and its derivatives. In this paper, a new optimization method to decide the PAA window is proposed based on root mean square distance measure. A rate of information loss is proposed to overcome the scalability issue, which can be used to balance information loss and query performance improvement caused by PAA transformation. Experiment results with a real time series dataset demonstrate that the method is effective and feasible to determine the PAA window size and optimize the whole performance of PAA algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast acquisition method of navigation receiver based on folded PMF-FFT Web service sub-chain recommendation leveraging graph searching Path prediction based on second-order Markov chain for the opportunistic networks A novel UEP resource allocation scheme for layered source transmission in COFDM systems Energy efficient scheduling with probability and task migration considerations for soft real-time systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1