数字健康双用例的自适应服务功能链编排:启发式增强q -学习方法

Jamila Alsayed Kassem, Li Zhong, Arie Taal, P. Grosso
{"title":"数字健康双用例的自适应服务功能链编排:启发式增强q -学习方法","authors":"Jamila Alsayed Kassem, Li Zhong, Arie Taal, P. Grosso","doi":"10.1109/NetSoft57336.2023.10175506","DOIUrl":null,"url":null,"abstract":"Digital Twin (DT) is a prominent technology to utilise and deploy within the healthcare sector. Yet, the main challenges facing such applications are: strict health data-sharing policies, high-performance network requirements, and possible infrastructure resource limitations. In this paper, we address all the challenges by provisioning adaptive Virtual Network Functions (VNFs) to enforce security policies associated with different data-sharing scenarios. We define a Cloud-Native Network orchestrator on top of a multi-node cluster mesh infrastructure for flexible and dynamic container scheduling. The proposed framework considers the intended data-sharing use case, the policies associated, and infrastructure configurations, then provisions Service Function Chaining (SFC) and provides routing configurations accordingly with little to no human intervention. As a result, we provide an adaptive network orchestration for digital health twin use cases, that is policy-aware, requirements-aware, and resource-aware.","PeriodicalId":223208,"journal":{"name":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Services Function Chain Orchestration For Digital Health Twin Use Cases: Heuristic-boosted Q-Learning Approach\",\"authors\":\"Jamila Alsayed Kassem, Li Zhong, Arie Taal, P. Grosso\",\"doi\":\"10.1109/NetSoft57336.2023.10175506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital Twin (DT) is a prominent technology to utilise and deploy within the healthcare sector. Yet, the main challenges facing such applications are: strict health data-sharing policies, high-performance network requirements, and possible infrastructure resource limitations. In this paper, we address all the challenges by provisioning adaptive Virtual Network Functions (VNFs) to enforce security policies associated with different data-sharing scenarios. We define a Cloud-Native Network orchestrator on top of a multi-node cluster mesh infrastructure for flexible and dynamic container scheduling. The proposed framework considers the intended data-sharing use case, the policies associated, and infrastructure configurations, then provisions Service Function Chaining (SFC) and provides routing configurations accordingly with little to no human intervention. As a result, we provide an adaptive network orchestration for digital health twin use cases, that is policy-aware, requirements-aware, and resource-aware.\",\"PeriodicalId\":223208,\"journal\":{\"name\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NetSoft57336.2023.10175506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft57336.2023.10175506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字孪生(DT)是在医疗保健部门使用和部署的一项重要技术。然而,这些应用程序面临的主要挑战是:严格的健康数据共享策略、高性能网络需求以及可能的基础设施资源限制。在本文中,我们通过提供自适应虚拟网络功能(VNFs)来执行与不同数据共享场景相关的安全策略来解决所有挑战。我们在多节点集群网格基础设施之上定义了一个云原生网络编排器,以实现灵活和动态的容器调度。建议的框架考虑预期的数据共享用例、关联的策略和基础设施配置,然后提供服务功能链接(SFC),并相应地提供路由配置,几乎不需要人工干预。因此,我们为数字健康双用例提供了自适应网络编排,即策略感知、需求感知和资源感知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Services Function Chain Orchestration For Digital Health Twin Use Cases: Heuristic-boosted Q-Learning Approach
Digital Twin (DT) is a prominent technology to utilise and deploy within the healthcare sector. Yet, the main challenges facing such applications are: strict health data-sharing policies, high-performance network requirements, and possible infrastructure resource limitations. In this paper, we address all the challenges by provisioning adaptive Virtual Network Functions (VNFs) to enforce security policies associated with different data-sharing scenarios. We define a Cloud-Native Network orchestrator on top of a multi-node cluster mesh infrastructure for flexible and dynamic container scheduling. The proposed framework considers the intended data-sharing use case, the policies associated, and infrastructure configurations, then provisions Service Function Chaining (SFC) and provides routing configurations accordingly with little to no human intervention. As a result, we provide an adaptive network orchestration for digital health twin use cases, that is policy-aware, requirements-aware, and resource-aware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Network Management in Multi-Domain 6G Networks based on Graph Neural Networks Showcasing In-Switch Machine Learning Inference Latency-Aware Kubernetes Scheduling for Microservices Orchestration at the Edge DRL-based Service Migration for MEC Cloud-Native 5G and beyond Networks Hierarchical Control Plane Framework for Multi-Domain TSN Orchestration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1