可视化技术在图像到图像翻译中的应用

Églen Protas, José Douglas Bratti, P. Ribeiro, Paulo L. J. Drews-Jr, S. Botelho
{"title":"可视化技术在图像到图像翻译中的应用","authors":"Églen Protas, José Douglas Bratti, P. Ribeiro, Paulo L. J. Drews-Jr, S. Botelho","doi":"10.1109/BRACIS.2018.00049","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks became a state-of-the-art approach for many different problems of computer vision, pattern recognition, and image processing. However, due to the large number of parameters of these architectures, researchers may find difficult to explain what the networks are using as discriminative patterns. An alternative to better understand the behavior of the learned convolutional kernels is the use of visualization techniques. Currently, visualization techniques are more frequently applied to classification tasks. In this paper, we address the visualization of image-to-image translation. One of the contributions of our work is the possibility to modify a network based on the kernel visualization and achieve superior results.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization Techniques Applied to Image-to-Image Translation\",\"authors\":\"Églen Protas, José Douglas Bratti, P. Ribeiro, Paulo L. J. Drews-Jr, S. Botelho\",\"doi\":\"10.1109/BRACIS.2018.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks became a state-of-the-art approach for many different problems of computer vision, pattern recognition, and image processing. However, due to the large number of parameters of these architectures, researchers may find difficult to explain what the networks are using as discriminative patterns. An alternative to better understand the behavior of the learned convolutional kernels is the use of visualization techniques. Currently, visualization techniques are more frequently applied to classification tasks. In this paper, we address the visualization of image-to-image translation. One of the contributions of our work is the possibility to modify a network based on the kernel visualization and achieve superior results.\",\"PeriodicalId\":405190,\"journal\":{\"name\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2018.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络成为计算机视觉、模式识别和图像处理等许多不同问题的最先进方法。然而,由于这些架构的大量参数,研究人员可能很难解释网络使用什么作为判别模式。更好地理解学习卷积核的行为的另一种方法是使用可视化技术。目前,可视化技术更频繁地应用于分类任务。在本文中,我们讨论了图像到图像翻译的可视化。我们工作的贡献之一是基于内核可视化修改网络并获得更好的结果的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualization Techniques Applied to Image-to-Image Translation
Convolutional Neural Networks became a state-of-the-art approach for many different problems of computer vision, pattern recognition, and image processing. However, due to the large number of parameters of these architectures, researchers may find difficult to explain what the networks are using as discriminative patterns. An alternative to better understand the behavior of the learned convolutional kernels is the use of visualization techniques. Currently, visualization techniques are more frequently applied to classification tasks. In this paper, we address the visualization of image-to-image translation. One of the contributions of our work is the possibility to modify a network based on the kernel visualization and achieve superior results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1