无线自组网和传感器网络中的地理协同转发研究

K. Zeng, W. Lou, Jie Yang, D.R. Brown
{"title":"无线自组网和传感器网络中的地理协同转发研究","authors":"K. Zeng, W. Lou, Jie Yang, D.R. Brown","doi":"10.1109/WASA.2007.121","DOIUrl":null,"url":null,"abstract":"In this paper, we study the geographic collaborative forwarding (GCF) scheme, a variant of opportunistic routing, which exploits the broadcast nature and spatial diversity of the wireless medium to improve the packet delivery efficiency. Our goal is to fully understand the principles, the gains, and the tradeoffs of the node collaboration and its associated cost, thus provide insightful analysis and guidance to the design of more efficient routing/forwarding protocols. We first identify the upper bound of the expected packet advancement (EPA) that GCF can achieve and prove the concavity of the maximum EPA. With energy efficiency as a major concern, we propose a new metric, EPA per unit energy consumption, which balances the packet advancement, reliability and energy consumption. By leveraging the proved properties, we then propose an efficient algorithm which selects a feasible candidate set that maximizes this local metric. We validate our analysis results by simulations, and justify the effectiveness of the new metric by comparing the performance of GCF with those of the existing geographic and opportunistic routing schemes.","PeriodicalId":316831,"journal":{"name":"International Conference on Wireless Algorithms, Systems and Applications (WASA 2007)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":"{\"title\":\"On Geographic Collaborative Forwarding in Wireless Ad Hoc and Sensor Networks\",\"authors\":\"K. Zeng, W. Lou, Jie Yang, D.R. Brown\",\"doi\":\"10.1109/WASA.2007.121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the geographic collaborative forwarding (GCF) scheme, a variant of opportunistic routing, which exploits the broadcast nature and spatial diversity of the wireless medium to improve the packet delivery efficiency. Our goal is to fully understand the principles, the gains, and the tradeoffs of the node collaboration and its associated cost, thus provide insightful analysis and guidance to the design of more efficient routing/forwarding protocols. We first identify the upper bound of the expected packet advancement (EPA) that GCF can achieve and prove the concavity of the maximum EPA. With energy efficiency as a major concern, we propose a new metric, EPA per unit energy consumption, which balances the packet advancement, reliability and energy consumption. By leveraging the proved properties, we then propose an efficient algorithm which selects a feasible candidate set that maximizes this local metric. We validate our analysis results by simulations, and justify the effectiveness of the new metric by comparing the performance of GCF with those of the existing geographic and opportunistic routing schemes.\",\"PeriodicalId\":316831,\"journal\":{\"name\":\"International Conference on Wireless Algorithms, Systems and Applications (WASA 2007)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Wireless Algorithms, Systems and Applications (WASA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WASA.2007.121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Wireless Algorithms, Systems and Applications (WASA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASA.2007.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

摘要

本文研究了地理协同转发(GCF)方案,该方案是机会路由的一种变体,利用无线介质的广播特性和空间多样性来提高分组传输效率。我们的目标是充分理解节点协作的原理、收益和权衡及其相关成本,从而为设计更有效的路由/转发协议提供有见地的分析和指导。我们首先确定了GCF所能达到的期望包进度(EPA)的上界,并证明了最大EPA的凹凸性。以能源效率为主要关注点,我们提出了一个新的度量,EPA每单位能耗,它平衡了包的进步,可靠性和能源消耗。通过利用已证明的属性,我们提出了一种有效的算法,该算法选择一个使该局部度量最大化的可行候选集。我们通过仿真验证了我们的分析结果,并通过将GCF的性能与现有的地理路由和机会路由方案的性能进行比较来证明新度量的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Geographic Collaborative Forwarding in Wireless Ad Hoc and Sensor Networks
In this paper, we study the geographic collaborative forwarding (GCF) scheme, a variant of opportunistic routing, which exploits the broadcast nature and spatial diversity of the wireless medium to improve the packet delivery efficiency. Our goal is to fully understand the principles, the gains, and the tradeoffs of the node collaboration and its associated cost, thus provide insightful analysis and guidance to the design of more efficient routing/forwarding protocols. We first identify the upper bound of the expected packet advancement (EPA) that GCF can achieve and prove the concavity of the maximum EPA. With energy efficiency as a major concern, we propose a new metric, EPA per unit energy consumption, which balances the packet advancement, reliability and energy consumption. By leveraging the proved properties, we then propose an efficient algorithm which selects a feasible candidate set that maximizes this local metric. We validate our analysis results by simulations, and justify the effectiveness of the new metric by comparing the performance of GCF with those of the existing geographic and opportunistic routing schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Capacity Analysis for Flat and Clustered Wireless Sensor Networks Cluster-Based Minimum Mean Square Estimation for Secure and Resilient Localization in Wireless Sensor Networks Iterated Algorithms for the Minimum Energy Broadcast Tree Problem in Wireless Ad Hoc Networks A novel Cognitive Radio Concept deploying Petri Net based Scheduling R-MAC: An Energy-Efficient MAC Protocol for Underwater Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1