具有选择性误差状态加权的非线性二次估计器

Eckhard Gauterin, F. Pöschke, Nico Goldschmidt, H. Schulte
{"title":"具有选择性误差状态加权的非线性二次估计器","authors":"Eckhard Gauterin, F. Pöschke, Nico Goldschmidt, H. Schulte","doi":"10.1109/EAIS.2017.7954827","DOIUrl":null,"url":null,"abstract":"A new approach for optimal observer design of nonlinear systems, the so-called Nonlinear Quadratic Estimator is proposed. This approach employs the minimisation of a quadratic cost functional, thereby comprising two design parameters: Selective weighting of specific error state components and estimated upper bound minimisation. The new approach works without dual system transformation, achieving significant error state minimisation with optimised error dynamics and enabling a selective error state minimisation. Within this proceeding the observer and estimator design method, respectively, is derived from a Lyapunov stability condition of nonlinear, time-continuous systems in Takagi-Sugeno model structure, solved with linear matrix inequalities. Its capability is illustrated for an academical example of a nonlinear system with observer based stabilisation.","PeriodicalId":286312,"journal":{"name":"2017 Evolving and Adaptive Intelligent Systems (EAIS)","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Quadratic Estimator with selective error state weighting\",\"authors\":\"Eckhard Gauterin, F. Pöschke, Nico Goldschmidt, H. Schulte\",\"doi\":\"10.1109/EAIS.2017.7954827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach for optimal observer design of nonlinear systems, the so-called Nonlinear Quadratic Estimator is proposed. This approach employs the minimisation of a quadratic cost functional, thereby comprising two design parameters: Selective weighting of specific error state components and estimated upper bound minimisation. The new approach works without dual system transformation, achieving significant error state minimisation with optimised error dynamics and enabling a selective error state minimisation. Within this proceeding the observer and estimator design method, respectively, is derived from a Lyapunov stability condition of nonlinear, time-continuous systems in Takagi-Sugeno model structure, solved with linear matrix inequalities. Its capability is illustrated for an academical example of a nonlinear system with observer based stabilisation.\",\"PeriodicalId\":286312,\"journal\":{\"name\":\"2017 Evolving and Adaptive Intelligent Systems (EAIS)\",\"volume\":\"210 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Evolving and Adaptive Intelligent Systems (EAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIS.2017.7954827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2017.7954827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了非线性系统观测器最优设计的一种新方法——非线性二次估计器。该方法采用二次代价函数的最小化,从而包含两个设计参数:特定误差状态分量的选择性加权和估计的上限最小化。新方法无需双系统转换,通过优化误差动态实现显著的误差状态最小化,并实现选择性误差状态最小化。在此过程中,分别从Takagi-Sugeno模型结构的非线性时间连续系统的Lyapunov稳定性条件出发,推导出用线性矩阵不等式求解的观测器和估计器设计方法。通过一个具有观测器镇定的非线性系统的实例说明了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear Quadratic Estimator with selective error state weighting
A new approach for optimal observer design of nonlinear systems, the so-called Nonlinear Quadratic Estimator is proposed. This approach employs the minimisation of a quadratic cost functional, thereby comprising two design parameters: Selective weighting of specific error state components and estimated upper bound minimisation. The new approach works without dual system transformation, achieving significant error state minimisation with optimised error dynamics and enabling a selective error state minimisation. Within this proceeding the observer and estimator design method, respectively, is derived from a Lyapunov stability condition of nonlinear, time-continuous systems in Takagi-Sugeno model structure, solved with linear matrix inequalities. Its capability is illustrated for an academical example of a nonlinear system with observer based stabilisation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Evolving Cloud-based Controller (RECCo) Autonomous anomaly detection Autonomous learning multi-model classifier of 0-Order (ALMMo-0) Granular evolving fuzzy robust feedback linearization Evolving Cauchy possibilistic clustering based on cosine similarity for monitoring cyber systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1