基于电容特性的白根病感染视觉检测系统

A. F. M. Sampian, H. Hashim, M. Kamal, N. E. Abdullah, Ummu Raihan Yussuf, N. A. Khairuzzaman, A. F. M. Azmi
{"title":"基于电容特性的白根病感染视觉检测系统","authors":"A. F. M. Sampian, H. Hashim, M. Kamal, N. E. Abdullah, Ummu Raihan Yussuf, N. A. Khairuzzaman, A. F. M. Azmi","doi":"10.1109/I2CACIS.2016.7885312","DOIUrl":null,"url":null,"abstract":"This paper presents the findings of Visions System performance for the detection of White root disease infection based on capacitance properties. A number of 100 latex samples representing healthy and white root infected rubber tree is tested for its capacitance value using Prototype Console Unit (PCU) developed. An optimized model for ANN using Levenberg Marquardt was designed. It is found that the hidden layer size of neuron 2 gave the best optimized ANN model with 77% sensitivity, 88% specificity, 82.5% accuracy, and uses 5 numbers of connections. A vision system based on this optimized model is developed and has the performance of 78.34% total accuracy.","PeriodicalId":399080,"journal":{"name":"2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vision system for detection of white root disease infection based on capacitance properties\",\"authors\":\"A. F. M. Sampian, H. Hashim, M. Kamal, N. E. Abdullah, Ummu Raihan Yussuf, N. A. Khairuzzaman, A. F. M. Azmi\",\"doi\":\"10.1109/I2CACIS.2016.7885312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the findings of Visions System performance for the detection of White root disease infection based on capacitance properties. A number of 100 latex samples representing healthy and white root infected rubber tree is tested for its capacitance value using Prototype Console Unit (PCU) developed. An optimized model for ANN using Levenberg Marquardt was designed. It is found that the hidden layer size of neuron 2 gave the best optimized ANN model with 77% sensitivity, 88% specificity, 82.5% accuracy, and uses 5 numbers of connections. A vision system based on this optimized model is developed and has the performance of 78.34% total accuracy.\",\"PeriodicalId\":399080,\"journal\":{\"name\":\"2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2CACIS.2016.7885312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CACIS.2016.7885312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了基于电容特性的视觉系统检测白根病感染的性能研究结果。采用研制的原型控制单元(PCU)对100棵健康和白根感染橡胶树的乳胶样品进行了电容值测试。设计了一个基于Levenberg Marquardt的人工神经网络优化模型。发现神经元2的隐层大小给出了最佳的优化ANN模型,灵敏度为77%,特异性为88%,准确率为82.5%,并且使用了5个连接数。基于该优化模型开发的视觉系统,总准确率达到78.34%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vision system for detection of white root disease infection based on capacitance properties
This paper presents the findings of Visions System performance for the detection of White root disease infection based on capacitance properties. A number of 100 latex samples representing healthy and white root infected rubber tree is tested for its capacitance value using Prototype Console Unit (PCU) developed. An optimized model for ANN using Levenberg Marquardt was designed. It is found that the hidden layer size of neuron 2 gave the best optimized ANN model with 77% sensitivity, 88% specificity, 82.5% accuracy, and uses 5 numbers of connections. A vision system based on this optimized model is developed and has the performance of 78.34% total accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy logic controller design for intelligent drilling system Implementation of TRL (Thru-Reflect-Line) calibration kit for power amplifier measurement Study on 3D scene reconstruction in robot navigation using stereo vision A low cost nephelometric turbidity sensor for continual domestic water quality monitoring system Power energy management strategy of micro-grid system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1