Yuan Huizheng, Gao Bo, Lu Junqing, L. Xingshan, Ge Zhonghao
{"title":"大启动动态范围I-FOG的设计与实现","authors":"Yuan Huizheng, Gao Bo, Lu Junqing, L. Xingshan, Ge Zhonghao","doi":"10.1109/CCDC.2015.7161927","DOIUrl":null,"url":null,"abstract":"An ideal way to achieve high precision of I-FOG is to enhance Sagnac effect. Lengthing the fiber and enlarging the diameter of fiber coil are the major two methods. However, they bring sharp decrease on the dynamic range of I-FOG. An algorithm attempting to make the I-FOG dynamically start and work on higher interference fringe is presented and designed. The experiment platform to verify the algorithm is also established. Experiment results show that the dynamic range of I-FOG is successfully enlarged from Ω<sub>-π</sub> ~ Ω<sub>π</sub> to Ω<sub>-7π</sub> ~ Ω<sub>7π</sub>. The bias and scalar factor test show that the dynamic-range-extended I-FOG is at the same precision as the original I-FOG. The dynamic start experiment also shows a further evidence to prove the correctness and reliable of the dynamic-range-extended algorithm.","PeriodicalId":273292,"journal":{"name":"The 27th Chinese Control and Decision Conference (2015 CCDC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and implementation of I-FOG with wide start dynamic range\",\"authors\":\"Yuan Huizheng, Gao Bo, Lu Junqing, L. Xingshan, Ge Zhonghao\",\"doi\":\"10.1109/CCDC.2015.7161927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ideal way to achieve high precision of I-FOG is to enhance Sagnac effect. Lengthing the fiber and enlarging the diameter of fiber coil are the major two methods. However, they bring sharp decrease on the dynamic range of I-FOG. An algorithm attempting to make the I-FOG dynamically start and work on higher interference fringe is presented and designed. The experiment platform to verify the algorithm is also established. Experiment results show that the dynamic range of I-FOG is successfully enlarged from Ω<sub>-π</sub> ~ Ω<sub>π</sub> to Ω<sub>-7π</sub> ~ Ω<sub>7π</sub>. The bias and scalar factor test show that the dynamic-range-extended I-FOG is at the same precision as the original I-FOG. The dynamic start experiment also shows a further evidence to prove the correctness and reliable of the dynamic-range-extended algorithm.\",\"PeriodicalId\":273292,\"journal\":{\"name\":\"The 27th Chinese Control and Decision Conference (2015 CCDC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 27th Chinese Control and Decision Conference (2015 CCDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2015.7161927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 27th Chinese Control and Decision Conference (2015 CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2015.7161927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and implementation of I-FOG with wide start dynamic range
An ideal way to achieve high precision of I-FOG is to enhance Sagnac effect. Lengthing the fiber and enlarging the diameter of fiber coil are the major two methods. However, they bring sharp decrease on the dynamic range of I-FOG. An algorithm attempting to make the I-FOG dynamically start and work on higher interference fringe is presented and designed. The experiment platform to verify the algorithm is also established. Experiment results show that the dynamic range of I-FOG is successfully enlarged from Ω-π ~ Ωπ to Ω-7π ~ Ω7π. The bias and scalar factor test show that the dynamic-range-extended I-FOG is at the same precision as the original I-FOG. The dynamic start experiment also shows a further evidence to prove the correctness and reliable of the dynamic-range-extended algorithm.