Adarsh Hasandka, Jianhua Zhang, S. Alam, A. Florita, B. Hodge
{"title":"基于仿真的大型混合智能电网通信系统参数优化框架设计","authors":"Adarsh Hasandka, Jianhua Zhang, S. Alam, A. Florita, B. Hodge","doi":"10.1109/SmartGridComm.2018.8587472","DOIUrl":null,"url":null,"abstract":"The design of reliable, dynamic, fault-tolerant hybrid smart grid communication networks is a challenge to achieve for autonomous power grids. Hybrid networks use different communications technologies for different area networks. A simulation-based parameter optimization framework is proposed to tune parameters of hybrid communication technologies to achieve the optimal network performance. It consists of three main components: a parallel executor used to speedup a list of simulations; a sampler running simulations using the parallel executor at each generation; and a hybrid stochastic optimization algorithm for tuning configurable parameters of hybrid designs and applications. The proposed hybrid metaheuristic optimization algorithm combines an evolutionary algorithm with a gradient method to quickly achieve an approximately global optimum solution. Three optimization test functions are employed to train the adjustable parameters of the hybrid algorithm. Results show the proposed parameter optimization framework can help the designer choose the right hybrid architecture with an optimal parameter set for a large-scale broadband PLC-WiMAX hybrid smart grid communication network.","PeriodicalId":213523,"journal":{"name":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"482 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Simulation-based Parameter Optimization Framework for Large-Scale Hybrid Smart Grid Communications Systems Design\",\"authors\":\"Adarsh Hasandka, Jianhua Zhang, S. Alam, A. Florita, B. Hodge\",\"doi\":\"10.1109/SmartGridComm.2018.8587472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of reliable, dynamic, fault-tolerant hybrid smart grid communication networks is a challenge to achieve for autonomous power grids. Hybrid networks use different communications technologies for different area networks. A simulation-based parameter optimization framework is proposed to tune parameters of hybrid communication technologies to achieve the optimal network performance. It consists of three main components: a parallel executor used to speedup a list of simulations; a sampler running simulations using the parallel executor at each generation; and a hybrid stochastic optimization algorithm for tuning configurable parameters of hybrid designs and applications. The proposed hybrid metaheuristic optimization algorithm combines an evolutionary algorithm with a gradient method to quickly achieve an approximately global optimum solution. Three optimization test functions are employed to train the adjustable parameters of the hybrid algorithm. Results show the proposed parameter optimization framework can help the designer choose the right hybrid architecture with an optimal parameter set for a large-scale broadband PLC-WiMAX hybrid smart grid communication network.\",\"PeriodicalId\":213523,\"journal\":{\"name\":\"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"482 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2018.8587472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2018.8587472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation-based Parameter Optimization Framework for Large-Scale Hybrid Smart Grid Communications Systems Design
The design of reliable, dynamic, fault-tolerant hybrid smart grid communication networks is a challenge to achieve for autonomous power grids. Hybrid networks use different communications technologies for different area networks. A simulation-based parameter optimization framework is proposed to tune parameters of hybrid communication technologies to achieve the optimal network performance. It consists of three main components: a parallel executor used to speedup a list of simulations; a sampler running simulations using the parallel executor at each generation; and a hybrid stochastic optimization algorithm for tuning configurable parameters of hybrid designs and applications. The proposed hybrid metaheuristic optimization algorithm combines an evolutionary algorithm with a gradient method to quickly achieve an approximately global optimum solution. Three optimization test functions are employed to train the adjustable parameters of the hybrid algorithm. Results show the proposed parameter optimization framework can help the designer choose the right hybrid architecture with an optimal parameter set for a large-scale broadband PLC-WiMAX hybrid smart grid communication network.