{"title":"可见光到红外视频转换的生成对抗网络","authors":"M. S. Uddin, Jiang Li","doi":"10.5772/intechopen.93866","DOIUrl":null,"url":null,"abstract":"Deep learning models are data driven. For example, the most popular convolutional neural network (CNN) model used for image classification or object detection requires large labeled databases for training to achieve competitive performances. This requirement is not difficult to be satisfied in the visible domain since there are lots of labeled video and image databases available nowadays. However, given the less popularity of infrared (IR) camera, the availability of labeled infrared videos or image databases is limited. Therefore, training deep learning models in infrared domain is still challenging. In this chapter, we applied the pix2pix generative adversarial network (Pix2Pix GAN) and cycle-consistent GAN (Cycle GAN) models to convert visible videos to infrared videos. The Pix2Pix GAN model requires visible-infrared image pairs for training while the Cycle GAN relaxes this constraint and requires only unpaired images from both domains. We applied the two models to an open-source database where visible and infrared videos provided by the signal multimedia and telecommunications laboratory at the Federal University of Rio de Janeiro. We evaluated conversion results by performance metrics including Inception Score (IS), Frechet Inception Distance (FID) and Kernel Inception Distance (KID). Our experiments suggest that cycle-consistent GAN is more effective than pix2pix GAN for generating IR images from optical images.","PeriodicalId":171152,"journal":{"name":"Recent Advances in Image Restoration with Applications to Real World Problems","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Generative Adversarial Networks for Visible to Infrared Video Conversion\",\"authors\":\"M. S. Uddin, Jiang Li\",\"doi\":\"10.5772/intechopen.93866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning models are data driven. For example, the most popular convolutional neural network (CNN) model used for image classification or object detection requires large labeled databases for training to achieve competitive performances. This requirement is not difficult to be satisfied in the visible domain since there are lots of labeled video and image databases available nowadays. However, given the less popularity of infrared (IR) camera, the availability of labeled infrared videos or image databases is limited. Therefore, training deep learning models in infrared domain is still challenging. In this chapter, we applied the pix2pix generative adversarial network (Pix2Pix GAN) and cycle-consistent GAN (Cycle GAN) models to convert visible videos to infrared videos. The Pix2Pix GAN model requires visible-infrared image pairs for training while the Cycle GAN relaxes this constraint and requires only unpaired images from both domains. We applied the two models to an open-source database where visible and infrared videos provided by the signal multimedia and telecommunications laboratory at the Federal University of Rio de Janeiro. We evaluated conversion results by performance metrics including Inception Score (IS), Frechet Inception Distance (FID) and Kernel Inception Distance (KID). Our experiments suggest that cycle-consistent GAN is more effective than pix2pix GAN for generating IR images from optical images.\",\"PeriodicalId\":171152,\"journal\":{\"name\":\"Recent Advances in Image Restoration with Applications to Real World Problems\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Image Restoration with Applications to Real World Problems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.93866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Image Restoration with Applications to Real World Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.93866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generative Adversarial Networks for Visible to Infrared Video Conversion
Deep learning models are data driven. For example, the most popular convolutional neural network (CNN) model used for image classification or object detection requires large labeled databases for training to achieve competitive performances. This requirement is not difficult to be satisfied in the visible domain since there are lots of labeled video and image databases available nowadays. However, given the less popularity of infrared (IR) camera, the availability of labeled infrared videos or image databases is limited. Therefore, training deep learning models in infrared domain is still challenging. In this chapter, we applied the pix2pix generative adversarial network (Pix2Pix GAN) and cycle-consistent GAN (Cycle GAN) models to convert visible videos to infrared videos. The Pix2Pix GAN model requires visible-infrared image pairs for training while the Cycle GAN relaxes this constraint and requires only unpaired images from both domains. We applied the two models to an open-source database where visible and infrared videos provided by the signal multimedia and telecommunications laboratory at the Federal University of Rio de Janeiro. We evaluated conversion results by performance metrics including Inception Score (IS), Frechet Inception Distance (FID) and Kernel Inception Distance (KID). Our experiments suggest that cycle-consistent GAN is more effective than pix2pix GAN for generating IR images from optical images.