基于cots的深空容错:总线网络体系结构的定性和定量分析

A. Tai, S. Chau, L. Alkalai
{"title":"基于cots的深空容错:总线网络体系结构的定性和定量分析","authors":"A. Tai, S. Chau, L. Alkalai","doi":"10.1109/HASE.1999.809480","DOIUrl":null,"url":null,"abstract":"Among the COTS applications in the X2000 architecture for deep-space missions, the use of commercial bus standards is the highest-payoff COTS application since a bus interface has a global impact and enabling effect on system cost and capability, respectively. While COTS bus standards enable significant cost reductions, it is a great challenge for us to deliver a highly-reliable long-term survivable system employing COTS standards that are not developed for mission-critical applications. The spirit of our solution to the problem is to exploit the pertinent standard features of a COTS product to circumvent its shortcomings, though these standard features may not be originally designed for highly reliable systems. In this paper we discuss our experiences and findings on the design and assessment of an IEEE 1394 compliant fault-tolerant bus architecture. We first derive and qualitatively analyze a \"stack-tree topology\" that not only complies with IEEE 1394 but also enables the implementation of a fault-tolerant bus architecture without node redundancy. We then present a quantitative evaluation that demonstrates significant reliability improvement from the COTS-based fault tolerance.","PeriodicalId":369187,"journal":{"name":"Proceedings 4th IEEE International Symposium on High-Assurance Systems Engineering","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"COTS-based fault tolerance in deep space: Qualitative and quantitative analyses of a bus network architecture\",\"authors\":\"A. Tai, S. Chau, L. Alkalai\",\"doi\":\"10.1109/HASE.1999.809480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the COTS applications in the X2000 architecture for deep-space missions, the use of commercial bus standards is the highest-payoff COTS application since a bus interface has a global impact and enabling effect on system cost and capability, respectively. While COTS bus standards enable significant cost reductions, it is a great challenge for us to deliver a highly-reliable long-term survivable system employing COTS standards that are not developed for mission-critical applications. The spirit of our solution to the problem is to exploit the pertinent standard features of a COTS product to circumvent its shortcomings, though these standard features may not be originally designed for highly reliable systems. In this paper we discuss our experiences and findings on the design and assessment of an IEEE 1394 compliant fault-tolerant bus architecture. We first derive and qualitatively analyze a \\\"stack-tree topology\\\" that not only complies with IEEE 1394 but also enables the implementation of a fault-tolerant bus architecture without node redundancy. We then present a quantitative evaluation that demonstrates significant reliability improvement from the COTS-based fault tolerance.\",\"PeriodicalId\":369187,\"journal\":{\"name\":\"Proceedings 4th IEEE International Symposium on High-Assurance Systems Engineering\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 4th IEEE International Symposium on High-Assurance Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HASE.1999.809480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 4th IEEE International Symposium on High-Assurance Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HASE.1999.809480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在用于深空任务的X2000架构的COTS应用中,商用总线标准的使用是收益最高的COTS应用,因为总线接口分别对系统成本和能力具有全局影响和启用效应。虽然COTS总线标准能够显著降低成本,但对于我们来说,采用COTS标准交付高可靠的长期生存系统是一个巨大的挑战,这些标准不是为关键任务应用开发的。我们解决问题的精神是利用COTS产品的相关标准特性来规避其缺点,尽管这些标准特性最初可能不是为高度可靠的系统设计的。在本文中,我们讨论了我们在设计和评估符合IEEE 1394的容错总线体系结构方面的经验和发现。我们首先推导并定性分析了一种“堆栈树拓扑”,它不仅符合IEEE 1394,而且能够实现无节点冗余的容错总线架构。然后,我们提出了一个定量评估,证明了基于cots的容错性显著提高了可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COTS-based fault tolerance in deep space: Qualitative and quantitative analyses of a bus network architecture
Among the COTS applications in the X2000 architecture for deep-space missions, the use of commercial bus standards is the highest-payoff COTS application since a bus interface has a global impact and enabling effect on system cost and capability, respectively. While COTS bus standards enable significant cost reductions, it is a great challenge for us to deliver a highly-reliable long-term survivable system employing COTS standards that are not developed for mission-critical applications. The spirit of our solution to the problem is to exploit the pertinent standard features of a COTS product to circumvent its shortcomings, though these standard features may not be originally designed for highly reliable systems. In this paper we discuss our experiences and findings on the design and assessment of an IEEE 1394 compliant fault-tolerant bus architecture. We first derive and qualitatively analyze a "stack-tree topology" that not only complies with IEEE 1394 but also enables the implementation of a fault-tolerant bus architecture without node redundancy. We then present a quantitative evaluation that demonstrates significant reliability improvement from the COTS-based fault tolerance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Why modern systems should minimize the use of safety critical software* Fault detectability analysis for requirements validation of fault tolerant systems UML-based analysis of embedded systems using a mapping to VHDL Using COTS software in high assurance control applications Building high-assurance systems using COTS components: whether, why, when and how?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1