图像压缩的小波特征族

M. Patlayenko, O. Osharovska, V. Pyliavskyi, V. Solodka
{"title":"图像压缩的小波特征族","authors":"M. Patlayenko, O. Osharovska, V. Pyliavskyi, V. Solodka","doi":"10.1109/TELECOM48729.2019.8994877","DOIUrl":null,"url":null,"abstract":"The article contains the results of experimental studies on compression of high and ultra-high definition images by families of wavelet functions. The dependences of the compression coefficients for the Daubechi, Haar, Coifleti, Meyer and biorthogonal wavelets are obtained. It is shown that wavelet functions allow more flexible control of the bit stream compared to a discrete cosine transform taking into account the detail of the images.","PeriodicalId":127549,"journal":{"name":"2019 27th National Conference with International Participation (TELECOM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wavelet Feature Family for Image Compression\",\"authors\":\"M. Patlayenko, O. Osharovska, V. Pyliavskyi, V. Solodka\",\"doi\":\"10.1109/TELECOM48729.2019.8994877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article contains the results of experimental studies on compression of high and ultra-high definition images by families of wavelet functions. The dependences of the compression coefficients for the Daubechi, Haar, Coifleti, Meyer and biorthogonal wavelets are obtained. It is shown that wavelet functions allow more flexible control of the bit stream compared to a discrete cosine transform taking into account the detail of the images.\",\"PeriodicalId\":127549,\"journal\":{\"name\":\"2019 27th National Conference with International Participation (TELECOM)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 27th National Conference with International Participation (TELECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELECOM48729.2019.8994877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th National Conference with International Participation (TELECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELECOM48729.2019.8994877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了利用小波函数族对高清和超高清图像进行压缩的实验研究结果。得到了Daubechi、Haar、Coifleti、Meyer和双正交小波压缩系数的依赖关系。结果表明,与考虑图像细节的离散余弦变换相比,小波函数允许更灵活地控制比特流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wavelet Feature Family for Image Compression
The article contains the results of experimental studies on compression of high and ultra-high definition images by families of wavelet functions. The dependences of the compression coefficients for the Daubechi, Haar, Coifleti, Meyer and biorthogonal wavelets are obtained. It is shown that wavelet functions allow more flexible control of the bit stream compared to a discrete cosine transform taking into account the detail of the images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy Efficient Routing Protocols in Resource Constrained IoT Networks Challenges of blockchain technologies in the future Application of Hausdorff Window for Array Antennas design TELECOM 2019 Committees Wavelet Feature Family for Image Compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1