基于最佳小波包的MUAP独立阈值去噪研究

Tingting Yuan, QUAN LIU, Qingsong Ai
{"title":"基于最佳小波包的MUAP独立阈值去噪研究","authors":"Tingting Yuan, QUAN LIU, Qingsong Ai","doi":"10.1109/WCSE.2010.23","DOIUrl":null,"url":null,"abstract":"Currently, wavelet packet technology is widely used in Electromyography (EMG) signal de-noising. However, most of these methods use global threshold to remove the noises from EMG signal. This paper proposes a new method, different nodes use different thresholds. The detected EMG signal is the summation of motor unit action potential (MUAP) trains from all active motor units. In our method, we use emglab software to abstract the MUAP of EMG, then calculate the best wavelet package tree and deal with each terminal node by independent threshold. Finally, the signal can be reconstructed by these processed coefficients. Compared with the wavelet packet de-noise with global default threshold, wavelet packet de-noise with level independent default threshold, the proposed method has distinguish advantageous.","PeriodicalId":376358,"journal":{"name":"2010 Second World Congress on Software Engineering","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study on Best Wavelet Packet Based Independent Threshold De-noising for MUAP\",\"authors\":\"Tingting Yuan, QUAN LIU, Qingsong Ai\",\"doi\":\"10.1109/WCSE.2010.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, wavelet packet technology is widely used in Electromyography (EMG) signal de-noising. However, most of these methods use global threshold to remove the noises from EMG signal. This paper proposes a new method, different nodes use different thresholds. The detected EMG signal is the summation of motor unit action potential (MUAP) trains from all active motor units. In our method, we use emglab software to abstract the MUAP of EMG, then calculate the best wavelet package tree and deal with each terminal node by independent threshold. Finally, the signal can be reconstructed by these processed coefficients. Compared with the wavelet packet de-noise with global default threshold, wavelet packet de-noise with level independent default threshold, the proposed method has distinguish advantageous.\",\"PeriodicalId\":376358,\"journal\":{\"name\":\"2010 Second World Congress on Software Engineering\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second World Congress on Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSE.2010.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second World Congress on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSE.2010.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

目前,小波包技术被广泛应用于肌电信号去噪。然而,这些方法大多采用全局阈值来去除肌电信号中的噪声。本文提出了一种新的方法,不同的节点使用不同的阈值。检测到的肌电信号是来自所有活动运动单元的运动单元动作电位(MUAP)序列的总和。在该方法中,我们使用emglab软件对肌电信号的MUAP进行抽象,然后计算出最佳的小波包树,并对每个终端节点进行独立的阈值处理。最后,利用处理后的系数对信号进行重构。与基于全局默认阈值的小波包去噪方法和基于级别无关默认阈值的小波包去噪方法相比,该方法具有明显的区别优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on Best Wavelet Packet Based Independent Threshold De-noising for MUAP
Currently, wavelet packet technology is widely used in Electromyography (EMG) signal de-noising. However, most of these methods use global threshold to remove the noises from EMG signal. This paper proposes a new method, different nodes use different thresholds. The detected EMG signal is the summation of motor unit action potential (MUAP) trains from all active motor units. In our method, we use emglab software to abstract the MUAP of EMG, then calculate the best wavelet package tree and deal with each terminal node by independent threshold. Finally, the signal can be reconstructed by these processed coefficients. Compared with the wavelet packet de-noise with global default threshold, wavelet packet de-noise with level independent default threshold, the proposed method has distinguish advantageous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Justification of Free Software and its Enlightenment An Integrated Software for the Performance Study of PET Detector with Neural Network Position Estimators Browser/Server Based Individual Well Profit Evaluation System Color Analysis of Soybean Leaves Based on Computer Vision Design of Power Grid Environment Monitoring System Based on WLAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1