COVID-19大流行期间的软件开发:堆栈溢出和GitHub分析

Pedro Almir Oliveira, P. Neto, Gleison Silva, I. Ibiapina, W. Lira, R. M. C. Andrade
{"title":"COVID-19大流行期间的软件开发:堆栈溢出和GitHub分析","authors":"Pedro Almir Oliveira, P. Neto, Gleison Silva, I. Ibiapina, W. Lira, R. M. C. Andrade","doi":"10.1109/SEH52539.2021.00009","DOIUrl":null,"url":null,"abstract":"The new coronavirus became a severe health issue for the world. This situation has motivated studies of different areas to combat this pandemic. In software engineering, we point out data visualization projects to follow the disease evolution, machine learning to estimate the pandemic behavior, and computer vision processing radiologic images. Most of these projects are stored in version control systems, and there are discussions about them in Question & Answer websites. In this work, we conducted a Mining Software Repository on a large number of questions and projects aiming to find trends that could help researchers and practitioners to fight against the coronavirus. We analyzed 1,190 questions from Stack Overflow and Data Science Q&A and 60,352 GitHub projects. We identified a correlation between the questions and projects throughout the pandemic. The main questions about coronavirus are how-to, related to web scraping and data visualization, using Python, JavaScript, and R. The most recurrent GitHub projects are machine learning projects, using JavaScript, Python, and Java.","PeriodicalId":415051,"journal":{"name":"2021 IEEE/ACM 3rd International Workshop on Software Engineering for Healthcare (SEH)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Software Development During COVID-19 Pandemic: an Analysis of Stack Overflow and GitHub\",\"authors\":\"Pedro Almir Oliveira, P. Neto, Gleison Silva, I. Ibiapina, W. Lira, R. M. C. Andrade\",\"doi\":\"10.1109/SEH52539.2021.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new coronavirus became a severe health issue for the world. This situation has motivated studies of different areas to combat this pandemic. In software engineering, we point out data visualization projects to follow the disease evolution, machine learning to estimate the pandemic behavior, and computer vision processing radiologic images. Most of these projects are stored in version control systems, and there are discussions about them in Question & Answer websites. In this work, we conducted a Mining Software Repository on a large number of questions and projects aiming to find trends that could help researchers and practitioners to fight against the coronavirus. We analyzed 1,190 questions from Stack Overflow and Data Science Q&A and 60,352 GitHub projects. We identified a correlation between the questions and projects throughout the pandemic. The main questions about coronavirus are how-to, related to web scraping and data visualization, using Python, JavaScript, and R. The most recurrent GitHub projects are machine learning projects, using JavaScript, Python, and Java.\",\"PeriodicalId\":415051,\"journal\":{\"name\":\"2021 IEEE/ACM 3rd International Workshop on Software Engineering for Healthcare (SEH)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM 3rd International Workshop on Software Engineering for Healthcare (SEH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEH52539.2021.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 3rd International Workshop on Software Engineering for Healthcare (SEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEH52539.2021.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

新型冠状病毒成为全球严重的健康问题。这种情况促使人们对不同领域进行研究,以防治这一流行病。在软件工程中,我们指出了跟踪疾病演变的数据可视化项目,估计大流行行为的机器学习项目,以及处理放射图像的计算机视觉项目。这些项目大多存储在版本控制系统中,并且在问答网站上有关于它们的讨论。在这项工作中,我们对大量的问题和项目进行了挖掘软件库,旨在找到可以帮助研究人员和从业者抗击冠状病毒的趋势。我们分析了来自Stack Overflow和Data Science Q&A以及60352个GitHub项目的1190个问题。我们在整个大流行期间确定了问题与项目之间的相关性。关于冠状病毒的主要问题是如何使用Python、JavaScript和r进行网络抓取和数据可视化。最常见的GitHub项目是机器学习项目,使用JavaScript、Python和Java。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Software Development During COVID-19 Pandemic: an Analysis of Stack Overflow and GitHub
The new coronavirus became a severe health issue for the world. This situation has motivated studies of different areas to combat this pandemic. In software engineering, we point out data visualization projects to follow the disease evolution, machine learning to estimate the pandemic behavior, and computer vision processing radiologic images. Most of these projects are stored in version control systems, and there are discussions about them in Question & Answer websites. In this work, we conducted a Mining Software Repository on a large number of questions and projects aiming to find trends that could help researchers and practitioners to fight against the coronavirus. We analyzed 1,190 questions from Stack Overflow and Data Science Q&A and 60,352 GitHub projects. We identified a correlation between the questions and projects throughout the pandemic. The main questions about coronavirus are how-to, related to web scraping and data visualization, using Python, JavaScript, and R. The most recurrent GitHub projects are machine learning projects, using JavaScript, Python, and Java.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SEH 2021 Welcome Message SEH 2021 Program Committee SEH 2021 Organizing Committee Title Page iii Probabilistic Model Checking for Activity Recognition in Medical Serious Games
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1