基于人工智能支持和Mavlink协议的无人机性能评估,用于应对社会事件

Murat Toren, Hakki Mollahasanoglu, Mehmet Çepni̇, Mücahit Kina
{"title":"基于人工智能支持和Mavlink协议的无人机性能评估,用于应对社会事件","authors":"Murat Toren, Hakki Mollahasanoglu, Mehmet Çepni̇, Mücahit Kina","doi":"10.18100/ijamec.1216914","DOIUrl":null,"url":null,"abstract":"The unmanned aerial vehicle name is TOMHA, which was developed to be used in the response of social incidents, aims to support the operational activities of security forces in response to social incidents, to expand their domination areas, to detect incidents that may disturb social peace in advance and to provide rapid intervention with the new unmanned aerial vehicle technologies developed. The scope of the TOMHA system designed was kept comprehensive compared to other unmanned aerial vehicles and the scope includes intervention to social events, ordering in local administrations, defense, reconnaissance and attack activities in military operations, inspections arranged for public interest, AFAD and service areas, forest fires detection and intervention, and public order operations. This TOMHA is being developed using the Pixhawk flight control card and the jetson nano artificial intelligence card. In addition to these cards, it has the feature of manual or artificial intelligence supported autonomous flight thanks to GPS, telemetry, FPV transceiver module, camera systems and national software to be used. It is controlled through the controller using RC communication channel for manual use. TOMHA has a flight time of 13.6 minutes, a thrust of 4.45G and a speed of 78 km and a mileage of 4993 meters in optimum conditions. The findings obtained by the tests performed with the designed TOMHA prototype show similar results with the literature. Thanks to the national design, TOMHA stands out when it encounters other unmanned aerial vehicles. It is seen that the response of the system to the sudden changes caused by the maneuver movements in the simulation environment is very fast and it follows the changes.","PeriodicalId":120305,"journal":{"name":"International Journal of Applied Mathematics Electronics and Computers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the performance of an unmanned aerial vehicle with artificial intelligence support and Mavlink protocol designed for response to social incidents response\",\"authors\":\"Murat Toren, Hakki Mollahasanoglu, Mehmet Çepni̇, Mücahit Kina\",\"doi\":\"10.18100/ijamec.1216914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unmanned aerial vehicle name is TOMHA, which was developed to be used in the response of social incidents, aims to support the operational activities of security forces in response to social incidents, to expand their domination areas, to detect incidents that may disturb social peace in advance and to provide rapid intervention with the new unmanned aerial vehicle technologies developed. The scope of the TOMHA system designed was kept comprehensive compared to other unmanned aerial vehicles and the scope includes intervention to social events, ordering in local administrations, defense, reconnaissance and attack activities in military operations, inspections arranged for public interest, AFAD and service areas, forest fires detection and intervention, and public order operations. This TOMHA is being developed using the Pixhawk flight control card and the jetson nano artificial intelligence card. In addition to these cards, it has the feature of manual or artificial intelligence supported autonomous flight thanks to GPS, telemetry, FPV transceiver module, camera systems and national software to be used. It is controlled through the controller using RC communication channel for manual use. TOMHA has a flight time of 13.6 minutes, a thrust of 4.45G and a speed of 78 km and a mileage of 4993 meters in optimum conditions. The findings obtained by the tests performed with the designed TOMHA prototype show similar results with the literature. Thanks to the national design, TOMHA stands out when it encounters other unmanned aerial vehicles. It is seen that the response of the system to the sudden changes caused by the maneuver movements in the simulation environment is very fast and it follows the changes.\",\"PeriodicalId\":120305,\"journal\":{\"name\":\"International Journal of Applied Mathematics Electronics and Computers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics Electronics and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18100/ijamec.1216914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics Electronics and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18100/ijamec.1216914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无人机名称为TOMHA,是为应对社会事件而开发的,旨在支持安全部队应对社会事件的作战活动,扩大其统治范围,提前发现可能扰乱社会和平的事件,并提供快速干预的新型无人机技术。与其他无人机相比,设计的TOMHA系统的范围保持全面,范围包括社会事件干预,地方行政秩序,军事行动中的防御,侦察和攻击活动,公共利益安排的检查,AFAD和服务区域,森林火灾探测和干预,以及公共秩序行动。这款TOMHA是使用Pixhawk飞行控制卡和jetson纳米人工智能卡开发的。除了这些卡之外,由于GPS、遥测、FPV收发模块、摄像系统和国家软件的使用,它还具有手动或人工智能支持的自主飞行功能。它是通过控制器控制使用RC通信通道手动使用。TOMHA的飞行时间为13.6分钟,推力为4.45G,最佳条件下的速度为78公里,里程为4993米。用所设计的TOMHA原型进行的测试结果与文献的结果相似。多亏了国家设计,TOMHA在遇到其他无人驾驶飞行器时脱颖而出。可以看出,在仿真环境中,系统对机动运动引起的突然变化的响应非常快,并遵循这些变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of the performance of an unmanned aerial vehicle with artificial intelligence support and Mavlink protocol designed for response to social incidents response
The unmanned aerial vehicle name is TOMHA, which was developed to be used in the response of social incidents, aims to support the operational activities of security forces in response to social incidents, to expand their domination areas, to detect incidents that may disturb social peace in advance and to provide rapid intervention with the new unmanned aerial vehicle technologies developed. The scope of the TOMHA system designed was kept comprehensive compared to other unmanned aerial vehicles and the scope includes intervention to social events, ordering in local administrations, defense, reconnaissance and attack activities in military operations, inspections arranged for public interest, AFAD and service areas, forest fires detection and intervention, and public order operations. This TOMHA is being developed using the Pixhawk flight control card and the jetson nano artificial intelligence card. In addition to these cards, it has the feature of manual or artificial intelligence supported autonomous flight thanks to GPS, telemetry, FPV transceiver module, camera systems and national software to be used. It is controlled through the controller using RC communication channel for manual use. TOMHA has a flight time of 13.6 minutes, a thrust of 4.45G and a speed of 78 km and a mileage of 4993 meters in optimum conditions. The findings obtained by the tests performed with the designed TOMHA prototype show similar results with the literature. Thanks to the national design, TOMHA stands out when it encounters other unmanned aerial vehicles. It is seen that the response of the system to the sudden changes caused by the maneuver movements in the simulation environment is very fast and it follows the changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative analysis of ANFIS models in Prediction of Streamflow: the case of Seyhan Basin Prediction of electromagnetic power density emitted from GSM base stations by using multiple linear regression Epileptic seizure detection combining power spectral density and high-frequency oscillations Adaptive Neural-Fuzzy controller design combined with LQR to control the position of gantry crane Evaluation of the performance of an unmanned aerial vehicle with artificial intelligence support and Mavlink protocol designed for response to social incidents response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1