高维数据的鲁棒降维

Huan Xu, C. Caramanis, Shie Mannor
{"title":"高维数据的鲁棒降维","authors":"Huan Xu, C. Caramanis, Shie Mannor","doi":"10.1109/ALLERTON.2008.4797709","DOIUrl":null,"url":null,"abstract":"We consider the dimensionality-reduction problem for a contaminated data set in a very high dimensional space, i.e., the problem of finding a subspace approximation of observed data, where the number of observations is of the same magnitude as the number of variables of each observation, and the data set contains some outlying observations. We propose a High-dimension Robust Principal Component Analysis (HR-PCA) algorithm that is tractable, robust to outliers and easily kernelizable. The resulted subspace has a bounded deviation from the desired one, and achieves optimality in the limit case where the portion of outliers goes to zero.","PeriodicalId":120561,"journal":{"name":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust dimensionality reduction for high-dimension data\",\"authors\":\"Huan Xu, C. Caramanis, Shie Mannor\",\"doi\":\"10.1109/ALLERTON.2008.4797709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the dimensionality-reduction problem for a contaminated data set in a very high dimensional space, i.e., the problem of finding a subspace approximation of observed data, where the number of observations is of the same magnitude as the number of variables of each observation, and the data set contains some outlying observations. We propose a High-dimension Robust Principal Component Analysis (HR-PCA) algorithm that is tractable, robust to outliers and easily kernelizable. The resulted subspace has a bounded deviation from the desired one, and achieves optimality in the limit case where the portion of outliers goes to zero.\",\"PeriodicalId\":120561,\"journal\":{\"name\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 46th Annual Allerton Conference on Communication, Control, and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2008.4797709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 46th Annual Allerton Conference on Communication, Control, and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2008.4797709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑在非常高维空间中污染数据集的降维问题,即寻找观测数据的子空间近似问题,其中观测值的数量与每个观测值的变量数量相同,并且数据集包含一些离群观测值。提出了一种易于处理、对异常值具有鲁棒性和易于核化的高维鲁棒主成分分析(HR-PCA)算法。所得到的子空间与期望的子空间有有界偏差,并且在离群值部分趋于零的极限情况下达到最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust dimensionality reduction for high-dimension data
We consider the dimensionality-reduction problem for a contaminated data set in a very high dimensional space, i.e., the problem of finding a subspace approximation of observed data, where the number of observations is of the same magnitude as the number of variables of each observation, and the data set contains some outlying observations. We propose a High-dimension Robust Principal Component Analysis (HR-PCA) algorithm that is tractable, robust to outliers and easily kernelizable. The resulted subspace has a bounded deviation from the desired one, and achieves optimality in the limit case where the portion of outliers goes to zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning sparse doubly-selective channels Ergodic two-user interference channels: Is separability optimal? Weight distribution of codes on hypergraphs Compound multiple access channels with conferencing decoders Transmission techniques for relay-interference networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1