{"title":"多问题处理器的高带宽地址转换","authors":"T. Austin, G. Sohi","doi":"10.1145/232973.232990","DOIUrl":null,"url":null,"abstract":"In an effort to push the envelope of system performance, microprocessor designs are continually exploiting higher levels of instruction-level parallelism, resulting in increasing bandwidth demands on the address translation mechanism. Most current microprocessor designs meet this demand with a multi-ported TLB. While this design provides an excellent hit rate at each port, its access latency and area grow very quickly as the number of ports is increased. As bandwidth demands continue to increase, multi-ported designs will soon impact memory access latency.We present four high-bandwidth address translation mechanisms with latency and area characteristics that scale better than a multiported TLB design. We extend traditional high-bandwidth memory design techniques to address translation, developing interleaved and multi-level TLB designs. In addition, we introduce two new designs crafted specifically for high-bandwidth address translation. Piggyback ports are introduced as a technique to exploit spatial locality in simultaneous translation requests, allowing accesses to the same virtual memory page to combine their requests at the TLB access port. Pretranslation is introduced as a technique for attaching translations to base register values, making it possible to reuse a single translation many times.We perform extensive simulation-based studies to evaluate our designs. We vary key system parameters, such as processor model, page size, and number of architected registers, to see what effects these changes have on the relative merits of each approach. A number of designs show particular promise. Multi-level TLBs with as few as eight entries in the upper-level TLB nearly achieve the performance of a TLB with unlimited bandwidth. Piggyback ports combined with a lesser-ported TLB structure, e.g., an interleaved or multi-ported TLB, also perform well. Pretranslation over a single-ported TLB performs almost as well as a same-sized multi-level TLB with the added benefit of decreased access latency for physically indexed caches.","PeriodicalId":415354,"journal":{"name":"23rd Annual International Symposium on Computer Architecture (ISCA'96)","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"High-Bandwidth Address Translation for Multiple-Issue Processors\",\"authors\":\"T. Austin, G. Sohi\",\"doi\":\"10.1145/232973.232990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an effort to push the envelope of system performance, microprocessor designs are continually exploiting higher levels of instruction-level parallelism, resulting in increasing bandwidth demands on the address translation mechanism. Most current microprocessor designs meet this demand with a multi-ported TLB. While this design provides an excellent hit rate at each port, its access latency and area grow very quickly as the number of ports is increased. As bandwidth demands continue to increase, multi-ported designs will soon impact memory access latency.We present four high-bandwidth address translation mechanisms with latency and area characteristics that scale better than a multiported TLB design. We extend traditional high-bandwidth memory design techniques to address translation, developing interleaved and multi-level TLB designs. In addition, we introduce two new designs crafted specifically for high-bandwidth address translation. Piggyback ports are introduced as a technique to exploit spatial locality in simultaneous translation requests, allowing accesses to the same virtual memory page to combine their requests at the TLB access port. Pretranslation is introduced as a technique for attaching translations to base register values, making it possible to reuse a single translation many times.We perform extensive simulation-based studies to evaluate our designs. We vary key system parameters, such as processor model, page size, and number of architected registers, to see what effects these changes have on the relative merits of each approach. A number of designs show particular promise. Multi-level TLBs with as few as eight entries in the upper-level TLB nearly achieve the performance of a TLB with unlimited bandwidth. Piggyback ports combined with a lesser-ported TLB structure, e.g., an interleaved or multi-ported TLB, also perform well. Pretranslation over a single-ported TLB performs almost as well as a same-sized multi-level TLB with the added benefit of decreased access latency for physically indexed caches.\",\"PeriodicalId\":415354,\"journal\":{\"name\":\"23rd Annual International Symposium on Computer Architecture (ISCA'96)\",\"volume\":\"267 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"23rd Annual International Symposium on Computer Architecture (ISCA'96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/232973.232990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd Annual International Symposium on Computer Architecture (ISCA'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/232973.232990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Bandwidth Address Translation for Multiple-Issue Processors
In an effort to push the envelope of system performance, microprocessor designs are continually exploiting higher levels of instruction-level parallelism, resulting in increasing bandwidth demands on the address translation mechanism. Most current microprocessor designs meet this demand with a multi-ported TLB. While this design provides an excellent hit rate at each port, its access latency and area grow very quickly as the number of ports is increased. As bandwidth demands continue to increase, multi-ported designs will soon impact memory access latency.We present four high-bandwidth address translation mechanisms with latency and area characteristics that scale better than a multiported TLB design. We extend traditional high-bandwidth memory design techniques to address translation, developing interleaved and multi-level TLB designs. In addition, we introduce two new designs crafted specifically for high-bandwidth address translation. Piggyback ports are introduced as a technique to exploit spatial locality in simultaneous translation requests, allowing accesses to the same virtual memory page to combine their requests at the TLB access port. Pretranslation is introduced as a technique for attaching translations to base register values, making it possible to reuse a single translation many times.We perform extensive simulation-based studies to evaluate our designs. We vary key system parameters, such as processor model, page size, and number of architected registers, to see what effects these changes have on the relative merits of each approach. A number of designs show particular promise. Multi-level TLBs with as few as eight entries in the upper-level TLB nearly achieve the performance of a TLB with unlimited bandwidth. Piggyback ports combined with a lesser-ported TLB structure, e.g., an interleaved or multi-ported TLB, also perform well. Pretranslation over a single-ported TLB performs almost as well as a same-sized multi-level TLB with the added benefit of decreased access latency for physically indexed caches.