深度特征在鱼类声音自动分类中的应用

Marielle Malfante, Omar Mohammed, C. Gervaise, M. Dalla Mura, J. Mars
{"title":"深度特征在鱼类声音自动分类中的应用","authors":"Marielle Malfante, Omar Mohammed, C. Gervaise, M. Dalla Mura, J. Mars","doi":"10.1109/OCEANSKOBE.2018.8559276","DOIUrl":null,"url":null,"abstract":"The work presented in this paper focuses on the environmental monitoring of underwater areas using acoustic signals. In particular, we propose to compare the effectiveness of various feature sets used to represent the underwater acoustic data for the automatic processing of fish sounds We focus on the detection and classification tasks. Specifically, we compare the use of features issued from signal processing presented and validated in [15], [16] to the use of features obtained through deep convolutional neural networks. Experimental results show that the use of signal processing features outperform the deep features in terms of classification accuracy.","PeriodicalId":441405,"journal":{"name":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Use of Deep Features for the Automatic Classification of Fish Sounds\",\"authors\":\"Marielle Malfante, Omar Mohammed, C. Gervaise, M. Dalla Mura, J. Mars\",\"doi\":\"10.1109/OCEANSKOBE.2018.8559276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work presented in this paper focuses on the environmental monitoring of underwater areas using acoustic signals. In particular, we propose to compare the effectiveness of various feature sets used to represent the underwater acoustic data for the automatic processing of fish sounds We focus on the detection and classification tasks. Specifically, we compare the use of features issued from signal processing presented and validated in [15], [16] to the use of features obtained through deep convolutional neural networks. Experimental results show that the use of signal processing features outperform the deep features in terms of classification accuracy.\",\"PeriodicalId\":441405,\"journal\":{\"name\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSKOBE.2018.8559276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSKOBE.2018.8559276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文的工作重点是利用声信号对水下环境进行监测。特别是,我们建议比较用于表示鱼声数据的各种特征集的有效性,以实现鱼声的自动处理。我们重点关注检测和分类任务。具体来说,我们比较了[15]、[16]中提出并验证的信号处理所产生的特征与通过深度卷积神经网络获得的特征的使用。实验结果表明,信号处理特征的使用在分类精度上优于深度特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of Deep Features for the Automatic Classification of Fish Sounds
The work presented in this paper focuses on the environmental monitoring of underwater areas using acoustic signals. In particular, we propose to compare the effectiveness of various feature sets used to represent the underwater acoustic data for the automatic processing of fish sounds We focus on the detection and classification tasks. Specifically, we compare the use of features issued from signal processing presented and validated in [15], [16] to the use of features obtained through deep convolutional neural networks. Experimental results show that the use of signal processing features outperform the deep features in terms of classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing an Energy Effective Autonomous USV for Undertaking Missions at the Highlands of Peru Automated Peak Detection in Doppler Spectra of HF Surface Wave Radar Evaluation of Environmental Data for Search and Rescue II Time Synchronization with Multiple-Access Data Transmission Protocol in Underwater Sensor Networks A Deployment Optimization Mechanism Using Depth Adjustable Nodes in Underwater Acoustic Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1