P. Hrishikesh, Densen Puthussery, K. A. Akhil, C. Jiji
{"title":"基于感受野块的单幅图像超分辨率相对论GAN提高了感知质量","authors":"P. Hrishikesh, Densen Puthussery, K. A. Akhil, C. Jiji","doi":"10.1109/ESDC56251.2023.10149876","DOIUrl":null,"url":null,"abstract":"Generative adversarial networks (GAN) are proved to be extremely useful to solve the Single image super resolution(SISR) problem as they can recover the finer texture details even with large upsamplng factors. In this paper, we propose a deep network architecture using a relativistic generative adversarial network (V-SRGAN) with receptive field block (RFB) for image super-resolution having good perceptual quality. Our generator network uses multi-scale RFBs which are capable of extracting the coarse and finer features from the input low resolution image to recover the super resolved image with finer details and textures. It is initially trained on mean absolute error (MAE) followed with relativistic average GAN (RaGAN) loss for both discriminator and generator. Training based on RaGAN loss enables the network to map the low resolution images to more realistic high-resolution counterparts. The proposed network was able to attain better results in terms of PSNR and learned perceptual image patch similarity (LPIPS) metric in comparison with the other GAN based methods. https://github.com/hrishikeshps94/RGAN-with-Receptive-Field-Block-for-SISR","PeriodicalId":354855,"journal":{"name":"2023 11th International Symposium on Electronic Systems Devices and Computing (ESDC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relativistic GAN using Receptive Field Block for Single Image Super-Resolution with improved Perceptual Quality\",\"authors\":\"P. Hrishikesh, Densen Puthussery, K. A. Akhil, C. Jiji\",\"doi\":\"10.1109/ESDC56251.2023.10149876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative adversarial networks (GAN) are proved to be extremely useful to solve the Single image super resolution(SISR) problem as they can recover the finer texture details even with large upsamplng factors. In this paper, we propose a deep network architecture using a relativistic generative adversarial network (V-SRGAN) with receptive field block (RFB) for image super-resolution having good perceptual quality. Our generator network uses multi-scale RFBs which are capable of extracting the coarse and finer features from the input low resolution image to recover the super resolved image with finer details and textures. It is initially trained on mean absolute error (MAE) followed with relativistic average GAN (RaGAN) loss for both discriminator and generator. Training based on RaGAN loss enables the network to map the low resolution images to more realistic high-resolution counterparts. The proposed network was able to attain better results in terms of PSNR and learned perceptual image patch similarity (LPIPS) metric in comparison with the other GAN based methods. https://github.com/hrishikeshps94/RGAN-with-Receptive-Field-Block-for-SISR\",\"PeriodicalId\":354855,\"journal\":{\"name\":\"2023 11th International Symposium on Electronic Systems Devices and Computing (ESDC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 11th International Symposium on Electronic Systems Devices and Computing (ESDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESDC56251.2023.10149876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International Symposium on Electronic Systems Devices and Computing (ESDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESDC56251.2023.10149876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relativistic GAN using Receptive Field Block for Single Image Super-Resolution with improved Perceptual Quality
Generative adversarial networks (GAN) are proved to be extremely useful to solve the Single image super resolution(SISR) problem as they can recover the finer texture details even with large upsamplng factors. In this paper, we propose a deep network architecture using a relativistic generative adversarial network (V-SRGAN) with receptive field block (RFB) for image super-resolution having good perceptual quality. Our generator network uses multi-scale RFBs which are capable of extracting the coarse and finer features from the input low resolution image to recover the super resolved image with finer details and textures. It is initially trained on mean absolute error (MAE) followed with relativistic average GAN (RaGAN) loss for both discriminator and generator. Training based on RaGAN loss enables the network to map the low resolution images to more realistic high-resolution counterparts. The proposed network was able to attain better results in terms of PSNR and learned perceptual image patch similarity (LPIPS) metric in comparison with the other GAN based methods. https://github.com/hrishikeshps94/RGAN-with-Receptive-Field-Block-for-SISR