老虎机实验中的进化算法和强化学习

Dan Martinec, M. Bundzel
{"title":"老虎机实验中的进化算法和强化学习","authors":"Dan Martinec, M. Bundzel","doi":"10.1109/PC.2013.6581401","DOIUrl":null,"url":null,"abstract":"Some control systems are difficult or impossible to be tuned by other means than automatically. We present here examples of optimization of the parameters of a PID controller regulating velocity of a slot car to the given set point using evolutionary optimization and reinforcement learning. These methods are implemented on the micro-controller of the slot car. Experimental results and comparison are provided.","PeriodicalId":232418,"journal":{"name":"2013 International Conference on Process Control (PC)","volume":"24 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evolutionary algorithms and reinforcement learning in experiments with slot cars\",\"authors\":\"Dan Martinec, M. Bundzel\",\"doi\":\"10.1109/PC.2013.6581401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some control systems are difficult or impossible to be tuned by other means than automatically. We present here examples of optimization of the parameters of a PID controller regulating velocity of a slot car to the given set point using evolutionary optimization and reinforcement learning. These methods are implemented on the micro-controller of the slot car. Experimental results and comparison are provided.\",\"PeriodicalId\":232418,\"journal\":{\"name\":\"2013 International Conference on Process Control (PC)\",\"volume\":\"24 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Process Control (PC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PC.2013.6581401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Process Control (PC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PC.2013.6581401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

有些控制系统很难或不可能通过除自动以外的其他方式进行调谐。我们在这里给出了使用进化优化和强化学习对PID控制器参数进行优化的例子,PID控制器将槽车的速度调节到给定的设定点。这些方法都在槽车的单片机上实现。给出了实验结果和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolutionary algorithms and reinforcement learning in experiments with slot cars
Some control systems are difficult or impossible to be tuned by other means than automatically. We present here examples of optimization of the parameters of a PID controller regulating velocity of a slot car to the given set point using evolutionary optimization and reinforcement learning. These methods are implemented on the micro-controller of the slot car. Experimental results and comparison are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid adaptive control of isothermal reactor Robust stabilization of switched two-tank system model via state feedback PI controller Continuously switched linearized models of the nonlinear once-through boiler model Design and verification of novel adaptive controller in speed servo drive Identification and self-tuning predictive control of heat exchanger
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1