用序列对序列学习进行数字BPSK和QPSK解调

Sarunas Kalade, L. Crockett, R. Stewart
{"title":"用序列对序列学习进行数字BPSK和QPSK解调","authors":"Sarunas Kalade, L. Crockett, R. Stewart","doi":"10.1109/5GWF.2018.8517049","DOIUrl":null,"url":null,"abstract":"In the last few years Machine Learning (ML) has seen explosive growth in a wide range of research fields and industries. With the advancements in Software Defined Radio (SDR), which allows more intelligent, adaptive radio systems to be built, the wireless communications field has a number of opportunities to apply ML techniques. In this paper, a novel approach to demodulation using a Sequence to Sequence (Seq2Seq) model is proposed. This type of model is shown to work effectively with PSK data and also has a number of useful properties that are not present in other machine learning algorithms. A basic Seq2Seq implementation for BPSK and QPSK demodulation is presented in this paper, and learned properties such as Automatic Modulation Classification (AMC), and ability to adapt to different length input sequences, are demonstrated. This is an exciting new avenue of research that provides considerable potential for application in next generation 5G networks.","PeriodicalId":440445,"journal":{"name":"2018 IEEE 5G World Forum (5GWF)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using Sequence to Sequence Learning for Digital BPSK and QPSK Demodulation\",\"authors\":\"Sarunas Kalade, L. Crockett, R. Stewart\",\"doi\":\"10.1109/5GWF.2018.8517049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last few years Machine Learning (ML) has seen explosive growth in a wide range of research fields and industries. With the advancements in Software Defined Radio (SDR), which allows more intelligent, adaptive radio systems to be built, the wireless communications field has a number of opportunities to apply ML techniques. In this paper, a novel approach to demodulation using a Sequence to Sequence (Seq2Seq) model is proposed. This type of model is shown to work effectively with PSK data and also has a number of useful properties that are not present in other machine learning algorithms. A basic Seq2Seq implementation for BPSK and QPSK demodulation is presented in this paper, and learned properties such as Automatic Modulation Classification (AMC), and ability to adapt to different length input sequences, are demonstrated. This is an exciting new avenue of research that provides considerable potential for application in next generation 5G networks.\",\"PeriodicalId\":440445,\"journal\":{\"name\":\"2018 IEEE 5G World Forum (5GWF)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 5G World Forum (5GWF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/5GWF.2018.8517049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5G World Forum (5GWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/5GWF.2018.8517049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在过去的几年里,机器学习(ML)在广泛的研究领域和行业中取得了爆炸式的增长。随着软件定义无线电(SDR)技术的进步,可以构建更智能、自适应的无线电系统,无线通信领域有许多应用机器学习技术的机会。本文提出了一种利用序列到序列(Seq2Seq)模型的解调方法。这种类型的模型被证明可以有效地处理PSK数据,并且还具有许多其他机器学习算法中不存在的有用属性。本文提出了一种用于BPSK和QPSK解调的基本Seq2Seq实现,并展示了其学习特性,如自动调制分类(AMC)和适应不同长度输入序列的能力。这是一个令人兴奋的新研究方向,为下一代5G网络的应用提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Sequence to Sequence Learning for Digital BPSK and QPSK Demodulation
In the last few years Machine Learning (ML) has seen explosive growth in a wide range of research fields and industries. With the advancements in Software Defined Radio (SDR), which allows more intelligent, adaptive radio systems to be built, the wireless communications field has a number of opportunities to apply ML techniques. In this paper, a novel approach to demodulation using a Sequence to Sequence (Seq2Seq) model is proposed. This type of model is shown to work effectively with PSK data and also has a number of useful properties that are not present in other machine learning algorithms. A basic Seq2Seq implementation for BPSK and QPSK demodulation is presented in this paper, and learned properties such as Automatic Modulation Classification (AMC), and ability to adapt to different length input sequences, are demonstrated. This is an exciting new avenue of research that provides considerable potential for application in next generation 5G networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Inequalities with 5G Internet Light Network Slice CHRONOS: A Cloud based Hybrid RF-Optical Network Over Synchronous Links Using Non-Orthogonal Multiplexing for In-Band Full-Duplex Backhaul for 5G Broadcasting Massive Machine Type Communications over 5G using Lean Protocols and Edge Proxies Adaptive Multiplicity Codes based PIR Protocol for Multi-Cloud Plateform Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1