自保护特设无线网络

Haiyun Luo, P. Zerfos, J. Kong, Songwu Lu, Lixia Zhang
{"title":"自保护特设无线网络","authors":"Haiyun Luo, P. Zerfos, J. Kong, Songwu Lu, Lixia Zhang","doi":"10.1109/ISCC.2002.1021731","DOIUrl":null,"url":null,"abstract":"Mobile ad hoc networking offers convenient infrastructureless communication over the shared wireless channel. However, the nature of ad hoc networks makes them vulnerable to security attacks. Examples of such attacks include passive eavesdropping over the wireless channel, denial of service attacks by malicious nodes and attacks from compromised nodes or stolen devices. Unlike their wired counterpart, infrastructureless ad hoc networks do not have a clear line of defense, and every node must be prepared for encounters with an adversary. Therefore, a centralized or hierarchical network security solution does not work well.This work provides scalable, distributed authentication services in ad hoc networks. Our design takes a self-securing approach, in which multiple nodes (say, k) collaboratively provide authentication services for other nodes in the network. We first formalize a localized trust model that lays the foundation for the design. We further propose refined localized certification services based on our previous work, and develop a new scalable share update to resist more powerful adversaries. Finally, we evaluate the solution through simulation and implementation.","PeriodicalId":261743,"journal":{"name":"Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"442","resultStr":"{\"title\":\"Self-securing ad hoc wireless networks\",\"authors\":\"Haiyun Luo, P. Zerfos, J. Kong, Songwu Lu, Lixia Zhang\",\"doi\":\"10.1109/ISCC.2002.1021731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile ad hoc networking offers convenient infrastructureless communication over the shared wireless channel. However, the nature of ad hoc networks makes them vulnerable to security attacks. Examples of such attacks include passive eavesdropping over the wireless channel, denial of service attacks by malicious nodes and attacks from compromised nodes or stolen devices. Unlike their wired counterpart, infrastructureless ad hoc networks do not have a clear line of defense, and every node must be prepared for encounters with an adversary. Therefore, a centralized or hierarchical network security solution does not work well.This work provides scalable, distributed authentication services in ad hoc networks. Our design takes a self-securing approach, in which multiple nodes (say, k) collaboratively provide authentication services for other nodes in the network. We first formalize a localized trust model that lays the foundation for the design. We further propose refined localized certification services based on our previous work, and develop a new scalable share update to resist more powerful adversaries. Finally, we evaluate the solution through simulation and implementation.\",\"PeriodicalId\":261743,\"journal\":{\"name\":\"Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"442\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC.2002.1021731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2002.1021731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 442

摘要

移动自组织网络在共享无线信道上提供方便的无基础设施通信。然而,自组织网络的性质使它们容易受到安全攻击。此类攻击的示例包括通过无线信道进行被动窃听、恶意节点的拒绝服务攻击以及来自受损节点或被盗设备的攻击。与有线网络不同,无基础设施的自组织网络没有明确的防线,每个节点都必须为遇到对手做好准备。因此,集中式或分层的网络安全解决方案不能很好地发挥作用。这项工作在自组织网络中提供可扩展的分布式身份验证服务。我们的设计采用自保护方法,其中多个节点(例如k)协作为网络中的其他节点提供身份验证服务。我们首先形式化一个本地化的信任模型,它为设计奠定了基础。我们在之前工作的基础上进一步提出了改进的本地化认证服务,并开发了一个新的可扩展共享更新来抵御更强大的对手。最后,通过仿真和实现对方案进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-securing ad hoc wireless networks
Mobile ad hoc networking offers convenient infrastructureless communication over the shared wireless channel. However, the nature of ad hoc networks makes them vulnerable to security attacks. Examples of such attacks include passive eavesdropping over the wireless channel, denial of service attacks by malicious nodes and attacks from compromised nodes or stolen devices. Unlike their wired counterpart, infrastructureless ad hoc networks do not have a clear line of defense, and every node must be prepared for encounters with an adversary. Therefore, a centralized or hierarchical network security solution does not work well.This work provides scalable, distributed authentication services in ad hoc networks. Our design takes a self-securing approach, in which multiple nodes (say, k) collaboratively provide authentication services for other nodes in the network. We first formalize a localized trust model that lays the foundation for the design. We further propose refined localized certification services based on our previous work, and develop a new scalable share update to resist more powerful adversaries. Finally, we evaluate the solution through simulation and implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
End-to-end quality of service in multi-class service high-speed networks via optimal least weight routing Using distributed component model for active service deployment Tunable fiber Bragg grating-based a pair of m-sequence coding for optical CDMA An integrated architecture for the scalable delivery of semi-dynamic Web content Scheduling constant bit rate flows in data over cable networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1