全自动评估黄斑水肿使用光学相干断层扫描(OCT)图像

Bilal Hassan, G. Raja
{"title":"全自动评估黄斑水肿使用光学相干断层扫描(OCT)图像","authors":"Bilal Hassan, G. Raja","doi":"10.1109/INTELSE.2016.7475153","DOIUrl":null,"url":null,"abstract":"Macular Edema (ME) is the retinal disorder which is caused because of fluid deposition in the sub-retinal layers. It causes loss of central vision if left untreated. The symptoms of this disease are not apparent in early stage and as the disease progresses; it becomes very difficult to diagnose. Optical Coherence Tomography (OCT) imaging is one of the latest and efficient techniques for the detection of macular edema at early stage. This paper proposes a fully automated method for the identification of ME from OCT images using Discriminant Analysis (DA) classifier. We trained the classifier by extracting 3 different features (max and min thickness between Inner Limiting Membrane (ILM) layer and choroid layer and the difference of max and min thickness) from 16 labeled OCT image. 30 OCT images (15 Healthy, 15 ME) are studied in proposed research. Our algorithm correctly classified 100% of ME patients and 93.33% of healthy patients.","PeriodicalId":127671,"journal":{"name":"2016 International Conference on Intelligent Systems Engineering (ICISE)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Fully automated assessment of Macular Edema using Optical Coherence Tomography (OCT) images\",\"authors\":\"Bilal Hassan, G. Raja\",\"doi\":\"10.1109/INTELSE.2016.7475153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Macular Edema (ME) is the retinal disorder which is caused because of fluid deposition in the sub-retinal layers. It causes loss of central vision if left untreated. The symptoms of this disease are not apparent in early stage and as the disease progresses; it becomes very difficult to diagnose. Optical Coherence Tomography (OCT) imaging is one of the latest and efficient techniques for the detection of macular edema at early stage. This paper proposes a fully automated method for the identification of ME from OCT images using Discriminant Analysis (DA) classifier. We trained the classifier by extracting 3 different features (max and min thickness between Inner Limiting Membrane (ILM) layer and choroid layer and the difference of max and min thickness) from 16 labeled OCT image. 30 OCT images (15 Healthy, 15 ME) are studied in proposed research. Our algorithm correctly classified 100% of ME patients and 93.33% of healthy patients.\",\"PeriodicalId\":127671,\"journal\":{\"name\":\"2016 International Conference on Intelligent Systems Engineering (ICISE)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Intelligent Systems Engineering (ICISE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTELSE.2016.7475153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Intelligent Systems Engineering (ICISE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELSE.2016.7475153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

黄斑水肿(ME)是一种视网膜疾病,是由于视网膜下层的液体沉积引起的。如果不及时治疗,会导致中央视力丧失。该病的症状在早期和随着疾病的发展而不明显;它变得非常难以诊断。光学相干层析成像(OCT)是一种最新和有效的早期黄斑水肿检测技术。本文提出了一种利用判别分析(DA)分类器从OCT图像中自动识别ME的方法。我们通过从16张标记OCT图像中提取3个不同的特征(ILM层与脉络膜层之间的最大和最小厚度以及最大和最小厚度之差)来训练分类器。本研究对30张OCT图像(15张健康图像,15张ME图像)进行了研究。我们的算法对ME患者的正确率为100%,对健康患者的正确率为93.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fully automated assessment of Macular Edema using Optical Coherence Tomography (OCT) images
Macular Edema (ME) is the retinal disorder which is caused because of fluid deposition in the sub-retinal layers. It causes loss of central vision if left untreated. The symptoms of this disease are not apparent in early stage and as the disease progresses; it becomes very difficult to diagnose. Optical Coherence Tomography (OCT) imaging is one of the latest and efficient techniques for the detection of macular edema at early stage. This paper proposes a fully automated method for the identification of ME from OCT images using Discriminant Analysis (DA) classifier. We trained the classifier by extracting 3 different features (max and min thickness between Inner Limiting Membrane (ILM) layer and choroid layer and the difference of max and min thickness) from 16 labeled OCT image. 30 OCT images (15 Healthy, 15 ME) are studied in proposed research. Our algorithm correctly classified 100% of ME patients and 93.33% of healthy patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fully automated assessment of Macular Edema using Optical Coherence Tomography (OCT) images Electromagnetic-based bridge energy harvester using traffic-induced bridge's vibrations and ambient wind Channel equalization for MIMO-FBMC systems Frequency response measurements based reduced order identification for dc-dc converter An active Power Factor Correction technique for bridgeless boost AC-DC converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1