基于自适应二维自回归建模的保结构图像插值

Xiangjun Zhang, Xiaolin Wu
{"title":"基于自适应二维自回归建模的保结构图像插值","authors":"Xiangjun Zhang, Xiaolin Wu","doi":"10.1109/ICIP.2007.4379987","DOIUrl":null,"url":null,"abstract":"The performance of image interpolation depends on an image model that can adapt to nonstationary statistics of natural images when estimating the missing pixels. However, the construction of such an adaptive model needs the knowledge of every pixels that are absent. We resolve this dilemma by a new piecewise 2D autoregressive technique that builds the model and estimates the missing pixels jointly. This task is formulated as a non-linear optimization problem. Although computationally demanding, the new non-linear approach produces superior results than current methods in both PSNR and subjective visual quality. Moreover, in quest for a practical solution, we break the non-linear optimization problem into two subproblems of linear least-squares estimation. This linear approach proves very effective in our experiments.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Structure Preserving Image Interpolation via Adaptive 2D Autoregressive Modeling\",\"authors\":\"Xiangjun Zhang, Xiaolin Wu\",\"doi\":\"10.1109/ICIP.2007.4379987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of image interpolation depends on an image model that can adapt to nonstationary statistics of natural images when estimating the missing pixels. However, the construction of such an adaptive model needs the knowledge of every pixels that are absent. We resolve this dilemma by a new piecewise 2D autoregressive technique that builds the model and estimates the missing pixels jointly. This task is formulated as a non-linear optimization problem. Although computationally demanding, the new non-linear approach produces superior results than current methods in both PSNR and subjective visual quality. Moreover, in quest for a practical solution, we break the non-linear optimization problem into two subproblems of linear least-squares estimation. This linear approach proves very effective in our experiments.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4379987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

图像插值的性能取决于在估计缺失像素时能够适应自然图像的非平稳统计量的图像模型。然而,这种自适应模型的构建需要每个缺失像素的知识。我们通过一种新的分段二维自回归技术来解决这一难题,该技术建立模型并联合估计缺失像素。这个任务被表述为一个非线性优化问题。尽管计算要求很高,但新的非线性方法在PSNR和主观视觉质量方面都优于现有方法。此外,为了寻求实际的解决方案,我们将非线性优化问题分解为线性最小二乘估计的两个子问题。这种线性方法在我们的实验中证明是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structure Preserving Image Interpolation via Adaptive 2D Autoregressive Modeling
The performance of image interpolation depends on an image model that can adapt to nonstationary statistics of natural images when estimating the missing pixels. However, the construction of such an adaptive model needs the knowledge of every pixels that are absent. We resolve this dilemma by a new piecewise 2D autoregressive technique that builds the model and estimates the missing pixels jointly. This task is formulated as a non-linear optimization problem. Although computationally demanding, the new non-linear approach produces superior results than current methods in both PSNR and subjective visual quality. Moreover, in quest for a practical solution, we break the non-linear optimization problem into two subproblems of linear least-squares estimation. This linear approach proves very effective in our experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Block-Based Gradient Domain High Dynamic Range Compression Design for Real-Time Applications Generation of Layered Depth Images from Multi-View Video Detection Strategies for Image Cube Trajectory Analysis An Efficient Compression Algorithm for Hyperspectral Images Based on Correlation Coefficients Adaptive Three Dimensional Wavelet Zerotree Coding Enabling Introduction of Stereoscopic (3D) Video: Formats and Compression Standards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1