物联网应用中基于生物的服务发现和选择方法

Elli Rapti, A. Karageorgos, C. Houstis, E. Houstis
{"title":"物联网应用中基于生物的服务发现和选择方法","authors":"Elli Rapti, A. Karageorgos, C. Houstis, E. Houstis","doi":"10.1109/SCC.2016.126","DOIUrl":null,"url":null,"abstract":"Traditional service discovery and selection approaches which rely mostly on centralized architectures, have been proven inadequate in the pervasive environment of the Internet of Things (IoT). In such settings, where decentralization of decision-making is mandatory, bio-inspired computing paradigms have emerged due to their inherent capability to operate without any central control. In this paper, taking inspiration from the widely studied bio-inspired Response Threshold Model, a decentralized service discovery and selection model is proposed. Preliminary results indicate that the proposed approach exhibits efficient scalability and routing performance.","PeriodicalId":115693,"journal":{"name":"2016 IEEE International Conference on Services Computing (SCC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A Bio-Inspired Service Discovery and Selection Approach for IoT Applications\",\"authors\":\"Elli Rapti, A. Karageorgos, C. Houstis, E. Houstis\",\"doi\":\"10.1109/SCC.2016.126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional service discovery and selection approaches which rely mostly on centralized architectures, have been proven inadequate in the pervasive environment of the Internet of Things (IoT). In such settings, where decentralization of decision-making is mandatory, bio-inspired computing paradigms have emerged due to their inherent capability to operate without any central control. In this paper, taking inspiration from the widely studied bio-inspired Response Threshold Model, a decentralized service discovery and selection model is proposed. Preliminary results indicate that the proposed approach exhibits efficient scalability and routing performance.\",\"PeriodicalId\":115693,\"journal\":{\"name\":\"2016 IEEE International Conference on Services Computing (SCC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Services Computing (SCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCC.2016.126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Services Computing (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC.2016.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

传统的服务发现和选择方法主要依赖于集中式架构,已被证明在物联网(IoT)的普及环境中是不充分的。在这样的环境中,决策的分散是强制性的,生物启发的计算范式由于其内在的能力而出现,无需任何中央控制。本文借鉴已有广泛研究的生物响应阈值模型,提出了一种分散的服务发现和选择模型。初步结果表明,该方法具有良好的可扩展性和路由性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bio-Inspired Service Discovery and Selection Approach for IoT Applications
Traditional service discovery and selection approaches which rely mostly on centralized architectures, have been proven inadequate in the pervasive environment of the Internet of Things (IoT). In such settings, where decentralization of decision-making is mandatory, bio-inspired computing paradigms have emerged due to their inherent capability to operate without any central control. In this paper, taking inspiration from the widely studied bio-inspired Response Threshold Model, a decentralized service discovery and selection model is proposed. Preliminary results indicate that the proposed approach exhibits efficient scalability and routing performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing the Required Degree of Multitenancy Isolation: A Case Study of Cloud-Hosted Bug Tracking System Complexity Reduction: Local Activity Ranking by Resource Entropy for QoS-Aware Cloud Scheduling An Elasticity-Aware Governance Platform for Cloud Service Delivery An Approach for Modeling and Ranking Node-Level Stragglers in Cloud Datacenters Dynamic Selection for Service Composition Based on Temporal and QoS Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1