使用模糊逻辑的跳跃检测

C. Roberts-Thomson, A. Lokshin, V. Kuzkin
{"title":"使用模糊逻辑的跳跃检测","authors":"C. Roberts-Thomson, A. Lokshin, V. Kuzkin","doi":"10.1109/CIES.2014.7011841","DOIUrl":null,"url":null,"abstract":"Jump detection and measurement is of particular interest in a wide range of sports, including snowboarding, skiing, skateboarding, wakeboarding, motorcycling, biking, gymnastics, and the high jump, among others. However, determining jump duration and height is often difficult and requires expert knowledge or visual analysis either in real-time or using video. Recent advances in low-cost MEMS inertial sensors enable a data-driven approach to jump detection and measurement. Today, inertial and GPS sensors attached to an athlete or to his or her equipment, e.g. snowboard, skateboard, or skis, can collect data during sporting activities. In these real life applications, effects such as vibration, sensor noise and bias, and various athletic maneuvers make jump detection difficult even using multiple sensors. This paper presents a fuzzy logic-based algorithm for jump detection in sport using accelerometer data. Fuzzy logic facilitates conversion of human intuition and vague linguistic descriptions of jumps to algorithmic form. The fuzzy algorithm described here was applied to snowboarding and ski jumping data, and successfully detected 92% of snowboarding jumps identified visually (rejecting 8% of jumps identified visually), with only 8% of detected jumps being false positives. In ski jumping, it successfully detected 100% of jumps identified visually, with no false positives. The fuzzy algorithm presented here has successfully been applied to automate jump detection in ski and snowboarding on a large scale, and as the basis of the AlpineReplay ski and snowboarding smartphone app, has identified 6370971 jumps from August 2011 through June 2014.","PeriodicalId":287779,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Jump detection using fuzzy logic\",\"authors\":\"C. Roberts-Thomson, A. Lokshin, V. Kuzkin\",\"doi\":\"10.1109/CIES.2014.7011841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Jump detection and measurement is of particular interest in a wide range of sports, including snowboarding, skiing, skateboarding, wakeboarding, motorcycling, biking, gymnastics, and the high jump, among others. However, determining jump duration and height is often difficult and requires expert knowledge or visual analysis either in real-time or using video. Recent advances in low-cost MEMS inertial sensors enable a data-driven approach to jump detection and measurement. Today, inertial and GPS sensors attached to an athlete or to his or her equipment, e.g. snowboard, skateboard, or skis, can collect data during sporting activities. In these real life applications, effects such as vibration, sensor noise and bias, and various athletic maneuvers make jump detection difficult even using multiple sensors. This paper presents a fuzzy logic-based algorithm for jump detection in sport using accelerometer data. Fuzzy logic facilitates conversion of human intuition and vague linguistic descriptions of jumps to algorithmic form. The fuzzy algorithm described here was applied to snowboarding and ski jumping data, and successfully detected 92% of snowboarding jumps identified visually (rejecting 8% of jumps identified visually), with only 8% of detected jumps being false positives. In ski jumping, it successfully detected 100% of jumps identified visually, with no false positives. The fuzzy algorithm presented here has successfully been applied to automate jump detection in ski and snowboarding on a large scale, and as the basis of the AlpineReplay ski and snowboarding smartphone app, has identified 6370971 jumps from August 2011 through June 2014.\",\"PeriodicalId\":287779,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIES.2014.7011841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIES.2014.7011841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

跳跃检测和测量在广泛的运动中特别感兴趣,包括单板滑雪,滑雪,滑板,滑水,摩托车,自行车,体操和跳高等等。然而,确定跳跃持续时间和高度通常很困难,需要专业知识或实时或使用视频的视觉分析。低成本MEMS惯性传感器的最新进展使数据驱动的方法能够进行跳跃检测和测量。如今,附着在运动员或其设备(如滑雪板、滑板或滑雪板)上的惯性和GPS传感器可以在体育活动中收集数据。在这些实际应用中,诸如振动、传感器噪声和偏置以及各种运动动作等影响使得即使使用多个传感器也难以进行跳跃检测。本文提出了一种基于模糊逻辑的基于加速度计数据的运动跳跃检测算法。模糊逻辑有助于将人类直觉和对跳跃的模糊语言描述转换为算法形式。本文描述的模糊算法应用于单板滑雪和跳台滑雪数据,成功检测出92%的视觉识别的单板滑雪跳跃(拒绝8%的视觉识别的跳跃),只有8%的检测到的跳跃是假阳性。在跳台滑雪中,它成功地检测到100%的视觉识别跳跃,没有假阳性。本文提出的模糊算法已经成功地大规模应用于滑雪和单板滑雪的跳跃自动检测,并作为AlpineReplay滑雪和单板滑雪智能手机应用程序的基础,从2011年8月到2014年6月,已经识别了6370971个跳跃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Jump detection using fuzzy logic
Jump detection and measurement is of particular interest in a wide range of sports, including snowboarding, skiing, skateboarding, wakeboarding, motorcycling, biking, gymnastics, and the high jump, among others. However, determining jump duration and height is often difficult and requires expert knowledge or visual analysis either in real-time or using video. Recent advances in low-cost MEMS inertial sensors enable a data-driven approach to jump detection and measurement. Today, inertial and GPS sensors attached to an athlete or to his or her equipment, e.g. snowboard, skateboard, or skis, can collect data during sporting activities. In these real life applications, effects such as vibration, sensor noise and bias, and various athletic maneuvers make jump detection difficult even using multiple sensors. This paper presents a fuzzy logic-based algorithm for jump detection in sport using accelerometer data. Fuzzy logic facilitates conversion of human intuition and vague linguistic descriptions of jumps to algorithmic form. The fuzzy algorithm described here was applied to snowboarding and ski jumping data, and successfully detected 92% of snowboarding jumps identified visually (rejecting 8% of jumps identified visually), with only 8% of detected jumps being false positives. In ski jumping, it successfully detected 100% of jumps identified visually, with no false positives. The fuzzy algorithm presented here has successfully been applied to automate jump detection in ski and snowboarding on a large scale, and as the basis of the AlpineReplay ski and snowboarding smartphone app, has identified 6370971 jumps from August 2011 through June 2014.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A graph-based signal processing approach for low-rate energy disaggregation GA optimized time delayed feedback control of chaos in a memristor based chaotic circuit Visualizing uncertainty with fuzzy rose diagrams Jump detection using fuzzy logic A Multi-Population Genetic Algorithm to solve multi-objective remote switches allocation problem in distribution networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1