利用人工神经网络对第二天的峰值负荷进行预测

T. Onoda
{"title":"利用人工神经网络对第二天的峰值负荷进行预测","authors":"T. Onoda","doi":"10.1109/ANN.1993.264333","DOIUrl":null,"url":null,"abstract":"This paper presents a method of next day's peak load forecasting using an artificial neural network (ANN). The authors combine the DSC search method (Davis, Swann, Campey search method) with the backpropagation learning algorithm (Bp) to reduce the training time and avoid converging at local minima. The forecasting results by the ANN is as good as human experts' results and is better than the forecasting results by the regression model. The mean absolute percentage error (MAPE) of next day's peak load forecasts using this method on actual utility data is shown to be 2.67% in the summer period and 1.52% in the winter period. The MAPE of forecasts using human experts' experience is shown to be 2.86% and 1.59% in each period. The MAPE of forecasts using the regression model is shown to be 3.09% and 1.74% in each period.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Next day's peak load forecasting using an artificial neural network\",\"authors\":\"T. Onoda\",\"doi\":\"10.1109/ANN.1993.264333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method of next day's peak load forecasting using an artificial neural network (ANN). The authors combine the DSC search method (Davis, Swann, Campey search method) with the backpropagation learning algorithm (Bp) to reduce the training time and avoid converging at local minima. The forecasting results by the ANN is as good as human experts' results and is better than the forecasting results by the regression model. The mean absolute percentage error (MAPE) of next day's peak load forecasts using this method on actual utility data is shown to be 2.67% in the summer period and 1.52% in the winter period. The MAPE of forecasts using human experts' experience is shown to be 2.86% and 1.59% in each period. The MAPE of forecasts using the regression model is shown to be 3.09% and 1.74% in each period.<<ETX>>\",\"PeriodicalId\":121897,\"journal\":{\"name\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1993.264333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种基于人工神经网络(ANN)的次日峰值负荷预测方法。将DSC搜索方法(Davis, Swann, Campey搜索方法)与反向传播学习算法(Bp)相结合,减少了训练时间,避免了收敛于局部极小值。人工神经网络的预测结果与人类专家的预测结果相当,优于回归模型的预测结果。利用该方法对实际公用事业数据进行次日高峰负荷预测的平均绝对百分比误差(MAPE)在夏季为2.67%,在冬季为1.52%。人类专家经验预测的MAPE分别为2.86%和1.59%。各时期回归模型预测的MAPE分别为3.09%和1.74%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Next day's peak load forecasting using an artificial neural network
This paper presents a method of next day's peak load forecasting using an artificial neural network (ANN). The authors combine the DSC search method (Davis, Swann, Campey search method) with the backpropagation learning algorithm (Bp) to reduce the training time and avoid converging at local minima. The forecasting results by the ANN is as good as human experts' results and is better than the forecasting results by the regression model. The mean absolute percentage error (MAPE) of next day's peak load forecasts using this method on actual utility data is shown to be 2.67% in the summer period and 1.52% in the winter period. The MAPE of forecasts using human experts' experience is shown to be 2.86% and 1.59% in each period. The MAPE of forecasts using the regression model is shown to be 3.09% and 1.74% in each period.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An adaptive fuzzy logic controller for AC-DC power systems Discrimination of partial discharge from noise in XLPE cable lines using a neural network Automation, with neural network based techniques, of short-term load forecasting at the Belgian national control centre Maximum electric power demand prediction by neural network Restoring current signals in real time using feedforward neural nets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1