Daniel-Jesus Munoz, M. Pinto, D. Gurov, L. Fuentes
{"title":"定义具有特征智能和变量智能质量属性的数值特征模型的分类推理","authors":"Daniel-Jesus Munoz, M. Pinto, D. Gurov, L. Fuentes","doi":"10.1145/3503229.3547057","DOIUrl":null,"url":null,"abstract":"Automatic analysis of variability is an important stage of Software Product Line (SPL) engineering. Incorporating quality information into this stage poses a significant challenge. However, quality-aware automated analysis tools are rare, mainly because in existing solutions variability and quality information are not unified under the same model. In this paper, we make use of the Quality Variability Model (QVM), based on Category Theory (CT), to redefine reasoning operations. We start defining and composing the six most common operations in SPL, but now as quality-based queries, which tend to be unavailable in other approaches. Consequently, QVM supports interactions between variant-wise and feature-wise quality attributes. As a proof of concept, we present, implement and execute the operations as lambda reasoning for CQL IDE - the state-of-the-art CT tool.","PeriodicalId":193319,"journal":{"name":"Proceedings of the 26th ACM International Systems and Software Product Line Conference - Volume B","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defining categorical reasoning of numerical feature models with feature-wise and variant-wise quality attributes\",\"authors\":\"Daniel-Jesus Munoz, M. Pinto, D. Gurov, L. Fuentes\",\"doi\":\"10.1145/3503229.3547057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic analysis of variability is an important stage of Software Product Line (SPL) engineering. Incorporating quality information into this stage poses a significant challenge. However, quality-aware automated analysis tools are rare, mainly because in existing solutions variability and quality information are not unified under the same model. In this paper, we make use of the Quality Variability Model (QVM), based on Category Theory (CT), to redefine reasoning operations. We start defining and composing the six most common operations in SPL, but now as quality-based queries, which tend to be unavailable in other approaches. Consequently, QVM supports interactions between variant-wise and feature-wise quality attributes. As a proof of concept, we present, implement and execute the operations as lambda reasoning for CQL IDE - the state-of-the-art CT tool.\",\"PeriodicalId\":193319,\"journal\":{\"name\":\"Proceedings of the 26th ACM International Systems and Software Product Line Conference - Volume B\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM International Systems and Software Product Line Conference - Volume B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3503229.3547057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM International Systems and Software Product Line Conference - Volume B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503229.3547057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Defining categorical reasoning of numerical feature models with feature-wise and variant-wise quality attributes
Automatic analysis of variability is an important stage of Software Product Line (SPL) engineering. Incorporating quality information into this stage poses a significant challenge. However, quality-aware automated analysis tools are rare, mainly because in existing solutions variability and quality information are not unified under the same model. In this paper, we make use of the Quality Variability Model (QVM), based on Category Theory (CT), to redefine reasoning operations. We start defining and composing the six most common operations in SPL, but now as quality-based queries, which tend to be unavailable in other approaches. Consequently, QVM supports interactions between variant-wise and feature-wise quality attributes. As a proof of concept, we present, implement and execute the operations as lambda reasoning for CQL IDE - the state-of-the-art CT tool.