用于步态分类的颞叶PDMs

E. Tassone, G. West, S. Venkatesh
{"title":"用于步态分类的颞叶PDMs","authors":"E. Tassone, G. West, S. Venkatesh","doi":"10.1109/ICPR.2002.1048489","DOIUrl":null,"url":null,"abstract":"Gait classification is a developing research area, particularly with regards to biometrics. It aims to use the distinctive spatial and temporal characteristics of human motion to classify differing activities. As a biometric, this extends to recognising different people by the heterogeneous aspects of their gait. This research aims to use a modified deformable model, the temporal PDM, to distinguish the movements of a walking and running person. The movement of 2D points on the moving form is used to provide input into the model and classify the type of gait present.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Temporal PDMs for gait classification\",\"authors\":\"E. Tassone, G. West, S. Venkatesh\",\"doi\":\"10.1109/ICPR.2002.1048489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gait classification is a developing research area, particularly with regards to biometrics. It aims to use the distinctive spatial and temporal characteristics of human motion to classify differing activities. As a biometric, this extends to recognising different people by the heterogeneous aspects of their gait. This research aims to use a modified deformable model, the temporal PDM, to distinguish the movements of a walking and running person. The movement of 2D points on the moving form is used to provide input into the model and classify the type of gait present.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

步态分类是一个发展中的研究领域,特别是在生物识别方面。它旨在利用人体运动的独特时空特征对不同的活动进行分类。作为一种生物识别技术,它可以通过步态的不同方面来识别不同的人。本研究旨在使用一种改进的可变形模型,即时间PDM,来区分走路和跑步的人的运动。运动形式上二维点的运动为模型提供输入,并对当前的步态类型进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporal PDMs for gait classification
Gait classification is a developing research area, particularly with regards to biometrics. It aims to use the distinctive spatial and temporal characteristics of human motion to classify differing activities. As a biometric, this extends to recognising different people by the heterogeneous aspects of their gait. This research aims to use a modified deformable model, the temporal PDM, to distinguish the movements of a walking and running person. The movement of 2D points on the moving form is used to provide input into the model and classify the type of gait present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pattern recognition for humanitarian de-mining Data clustering using evidence accumulation Facial expression recognition using pseudo 3-D hidden Markov models Speeding up SVM decision based on mirror points Real-time tracking and estimation of plane pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1